Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Virulence ; 12(1): 3015-3027, 2021 12.
Article in English | MEDLINE | ID: mdl-34643172

ABSTRACT

Streptococcus agalactiae glyceraldehyde 3-phosphate dehydrogenase (GAPDH), encoded by gapC, is a glycolytic enzyme that is associated with virulence and immune-mediated protection. However, the role of GAPDH in cellular cytokine responses to S. agalactiae, bacterial phagocytosis and colonization of the female reproductive tract, a central host niche, is unknown. We expressed and studied purified recombinant GAPDH (rGAPDH) of S. agalactiae in cytokine elicitation assays with human monocyte-derived macrophage, epithelial cell, and polymorphonuclear leukocyte (PMN) co-culture infection models. We also generated a S. agalactiae mutant that over-expresses GAPDH (oeGAPDH) from gapC using a constitutively active promoter, and analyzed the mutant in murine macrophage antibiotic protection assays and in virulence assays in vivo, using a colonization model that is based on experimental infection of the reproductive tract in female mice. Human cell co-cultures produced interleukin (IL)-1ß, IL-6, macrophage inflammatory protein (MIP)-1, tumor necrosis factor (TNF)-α and IL-10 within 24 h of exposure to rGAPDH. PMNs were required for several of these cytokine responses. However, over-expression of GAPDH in S. agalactiae did not significantly affect measures of phagocytic uptake compared to an empty vector control. In contrast, oeGAPDH-S. agalactiae showed a small but statistically significant attenuation for persistence in the reproductive tract of female mice during the chronic phase of infection (10-28 days post-inoculation), relative to the vector control. We conclude that S. agalactiae GAPDH elicits production of multiple cytokines from human cells, and over-expression of GAPDH renders the bacterium more susceptible to host clearance in the female reproductive tract.One-sentence summary: This study shows Streptococcus agalactiae glyceraldehyde 3-phosphate dehydrogenase, an enzyme that functions in glycolysis, gluconeogenesis and virulence, modifies phagocytosis outcomes, including cytokine synthesis, and affects bacterial persistence in the female reproductive tract.


Subject(s)
Cytokines , Streptococcus agalactiae , Animals , Female , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Humans , Immunologic Factors , Mice , Streptococcus agalactiae/genetics , Virulence
2.
mSphere ; 4(6)2019 11 27.
Article in English | MEDLINE | ID: mdl-31776239

ABSTRACT

Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) engages interleukin-10 (IL-10) as an early innate immune response to regulate inflammation and promote the control of bladder infection. However, the mechanism of engagement of innate immunity by UPEC that leads to elicitation of IL-10 in the bladder is unknown. Here, we identify the major UPEC flagellar filament, FliC, as a key bacterial component sensed by the bladder innate immune system responsible for the induction of IL-10 synthesis. IL-10 responses of human as well as mouse bladder epithelial cell-monocyte cocultures were triggered by flagella of three major UPEC representative strains, CFT073, UTI89, and EC958. FliC purified to homogeneity induced IL-10 in vitro and in vivo as well as other functionally related cytokines, including IL-6. The genome-wide innate immunological context of FliC-induced IL-10 in the bladder was defined using RNA sequencing that revealed a network of transcriptional and antibacterial defenses comprising 1,400 genes that were induced by FliC. Of the FliC-responsive bladder transcriptome, altered expression of il10 and 808 additional genes were dependent on Toll-like receptor 5 (TLR5), according to analysis of TLR5-deficient mice. Examination of the potential of FliC and associated innate immune signature in the bladder to boost host defense, based on prophylactic or therapeutic administration to mice, revealed significant benefits for the control of UPEC. We conclude that detection of FliC through TLR5 triggers rapid IL-10 synthesis in the bladder, and FliC represents a potential immune modulator that might offer benefit for the treatment or prevention of UPEC UTI.IMPORTANCE Interleukin-10 is part of the immune response to urinary tract infection (UTI) due to E. coli, and it is important in the early control of infection in the bladder. Defining the mechanism of engagement of the immune system by the bacteria that enables the protective IL-10 response is critical to exploring how we might exploit this mechanism for new infection control strategies. In this study, we reveal part of the bacterial flagellar apparatus (FliC) is an important component that is sensed by and responsible for induction of IL-10 in the response to UPEC. We show this response occurs in a TLR5-dependent manner. Using infection prevention and control trials in mice infected with E. coli, this study also provides evidence that purified FliC might be of value in novel approaches for the treatment of UTI or in preventing infection by exploiting the FliC-triggered bladder transcriptome.


Subject(s)
Escherichia coli Infections/immunology , Escherichia coli Proteins/immunology , Flagellin/immunology , Interleukin-10/metabolism , Toll-Like Receptor 5/metabolism , Urinary Bladder/immunology , Uropathogenic Escherichia coli/immunology , Animals , Cell Line , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/microbiology , Escherichia coli Infections/microbiology , Gene Expression Profiling , Humans , Immunity, Innate , Mice, Inbred C57BL , Models, Theoretical , Time Factors , Urinary Bladder/microbiology
3.
Article in English | MEDLINE | ID: mdl-31069177

ABSTRACT

Flagella are expressed on the surface of a wide range of bacteria, conferring motility and contributing to virulence and innate immune stimulation. Host-pathogen interaction studies of the roles of flagella in infection, including due to uropathogenic Escherichia coli (UPEC), have used various methods to purify and examine the biology of the major flagella subunit protein, FliC. These studies have offered insight into the ways in which flagella proteins interact with host cells. However, previous methods used to extract and purify FliC, such as mechanical shearing, ultracentrifugation, heterologous expression in laboratory E. coli strains, and precipitation-inducing chemical treatments have various limitations; as a result, there are few observations based on highly purified, non-denatured FliC in the literature. This is especially relevant to host-pathogen interaction studies such as immune assays that are designed to parallel, as closely as possible, naturally-occurring interactions between host cells and flagella. In this study, we sought to establish a new, carefully optimized method to extract and purify non-denatured, native FliC from the reference UPEC strain CFT073 to be suitable for immune assays. To achieve purification of FliC to homogeneity, we used a mutant CFT073 strain containing deletions in four major chaperone-usher fimbriae operons (type 1, F1C and two P fimbrial gene clusters; CFT073Δ4). A sequential flagella extraction method based on mechanical shearing, ultracentrifugation, size exclusion chromatography, protein concentration and endotoxin removal was applied to CFT073Δ4. Protein purity and integrity was assessed using SDS-PAGE, Western blots with anti-flagellin antisera, and native-PAGE. We also generated a fliC-deficient strain, CFT073Δ4ΔfliC, to enable the concurrent preparation of a suitable carrier control to be applied in downstream assays. Innate immune stimulation was examined by exposing J774A.1 macrophages to 0.05-1 µg of purified FliC for 5 h; the supernatants were analyzed for cytokines known to be induced by flagella, including TNF-α, IL-6, and IL-12; the results were assessed in the context of prior literature. Macrophage responses to purified FliC encompassed significant levels of several cytokines consistent with prior literature reports. The purification method described here establishes a new approach to examine highly purified FliC in the context of host-pathogen interaction model systems.


Subject(s)
Antigens, Bacterial/isolation & purification , Chromatography, Liquid/methods , Escherichia coli Proteins/isolation & purification , Flagella/chemistry , Flagellin/isolation & purification , Uropathogenic Escherichia coli/chemistry , Animals , Cell Line , Cytokines/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Ultracentrifugation/methods
4.
J Infect Dis ; 213(4): 659-68, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26324782

ABSTRACT

BACKGROUND: CD14, a coreceptor for several pattern recognition receptors and a widely used monocyte/macrophage marker, plays a key role in host responses to gram-negative bacteria. Despite the central role of CD14 in the inflammatory response to lipopolysaccharide and other microbial products and in the dissemination of bacteria in some infections, the signaling networks controlled by CD14 during urinary tract infection (UTI) are unknown. METHODS: We used uropathogenic Escherichia coli (UPEC) infection of wild-type (WT) C57BL/6 and Cd14(-/-) mice and RNA sequencing to define the CD14-dependent transcriptional signature and the role of CD14 in host defense against UTI in the bladder. RESULTS: UPEC induced the upregulation of Cd14 and the monocyte/macrophage-related genes Emr1/F4/80 and Csf1r/c-fms, which was associated with lower UPEC burdens in WT mice, compared with Cd14(-/-) mice. Exacerbation of infection in Cd14(-/-) mice was associated with the absence of a 491-gene transcriptional signature in the bladder that encompassed multiple host networks not previously associated with this receptor. CD14-dependent pathways included immune cell trafficking, differential cytokine production in macrophages, and interleukin 17 signaling. Depletion of monocytes/macrophages in the bladder by administration of liposomal clodronate led to higher UPEC burdens. CONCLUSIONS: This study identifies new host protective and signaling roles for CD14 in the bladder during UPEC UTI.


Subject(s)
Lipopolysaccharide Receptors/metabolism , Macrophages/immunology , Signal Transduction , Urinary Bladder/immunology , Urinary Tract Infections/immunology , Uropathogenic Escherichia coli/immunology , Animals , Female , Gene Deletion , Gene Expression Profiling , Lipopolysaccharide Receptors/genetics , Mice, Inbred C57BL , Mice, Knockout , Urinary Tract Infections/microbiology
5.
Sci Rep ; 5: 16149, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26548325

ABSTRACT

Escherichia coli sequence type 131 (ST131) is a globally dominant multidrug resistant clone associated with urinary tract and bloodstream infections. Most ST131 strains exhibit resistance to multiple antibiotics and cause infections associated with limited treatment options. The largest sub-clonal ST131 lineage is resistant to fluoroquinolones, contains the type 1 fimbriae fimH30 allele and expresses an H4 flagella antigen. Flagella are motility organelles that contribute to UPEC colonisation of the upper urinary tract. In this study, we examined the specific role of H4 flagella in ST131 motility and interaction with host epithelial and immune cells. We show that the majority of H4-positive ST131 strains are motile and are enriched for flagella expression during static pellicle growth. We also tested the role of H4 flagella in ST131 through the construction of specific mutants, over-expression strains and isogenic mutants that expressed alternative H1 and H7 flagellar subtypes. Overall, our results revealed that H4, H1 and H7 flagella possess conserved phenotypes with regards to motility, epithelial cell adhesion, invasion and uptake by macrophages. In contrast, H4 flagella trigger enhanced induction of the anti-inflammatory cytokine IL-10 compared to H1 and H7 flagella, a property that may contribute to ST131 fitness in the urinary tract.


Subject(s)
Cell Movement/genetics , Escherichia coli/genetics , Flagella/genetics , Urinary Tract Infections/genetics , Adhesins, Escherichia coli/genetics , Bacterial Adhesion/genetics , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/pathogenicity , Fimbriae Proteins/genetics , Fluoroquinolones/administration & dosage , Humans , Interleukin-10/biosynthesis , Interleukin-10/genetics , Microbial Sensitivity Tests , Urinary Tract Infections/microbiology , beta-Lactamases/genetics
6.
PLoS One ; 8(10): e78013, 2013.
Article in English | MEDLINE | ID: mdl-24155979

ABSTRACT

Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC) being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10) in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions.


Subject(s)
Epithelial Cells/metabolism , Epithelial Cells/microbiology , Interleukin-10/biosynthesis , Monocytes/microbiology , Urinary Bladder/pathology , Uropathogenic Escherichia coli/physiology , Urothelium/pathology , Biomarkers/metabolism , Cell Communication , Cell Line , Coculture Techniques , Epithelial Cells/pathology , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Female , Gene Expression Regulation , Humans , Interleukin-10/genetics , Macrophages/metabolism , Monocytes/metabolism , Monocytes/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Solubility
7.
FEMS Immunol Med Microbiol ; 64(3): 295-313, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22268692

ABSTRACT

Since its initial description as a Th2-cytokine antagonistic to interferon-alpha and granulocyte-macrophage colony-stimulating factor, many studies have shown various anti-inflammatory actions of interleukin-10 (IL-10), and its role in infection as a key regulator of innate immunity. Studies have shown that IL-10 induced in response to microorganisms and their products plays a central role in shaping pathogenesis. IL-10 appears to function as both sword and shield in the response to varied groups of microorganisms in its capacity to mediate protective immunity against some organisms but increase susceptibility to other infections. The nature of IL-10 as a pleiotropic modulator of host responses to microorganisms is explained, in part, by its potent and varied effects on different immune effector cells which influence antimicrobial activity. A new understanding of how microorganisms trigger IL-10 responses is emerging, along with recent discoveries of how IL-10 produced during disease might be harnessed for better protective or therapeutic strategies. In this review, we summarize studies from the past 5 years that have reported the induction of IL-10 by different classes of pathogenic microorganisms, including protozoa, nematodes, fungi, viruses and bacteria and discuss the impact of this induction on the persistence and/or clearance of microorganisms in the host.


Subject(s)
Communicable Diseases/immunology , Host-Pathogen Interactions/immunology , Interleukin-10/biosynthesis , Animals , Humans , Immunity, Innate/immunology , Interleukin-10/immunology
8.
J Immunol ; 188(2): 781-92, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22184725

ABSTRACT

Early transcriptional activation events that occur in bladder immediately following bacterial urinary tract infection (UTI) are not well defined. In this study, we describe the whole bladder transcriptome of uropathogenic Escherichia coli (UPEC) cystitis in mice using genome-wide expression profiling to define the transcriptome of innate immune activation stemming from UPEC colonization of the bladder. Bladder RNA from female C57BL/6 mice, analyzed using 1.0 ST-Affymetrix microarrays, revealed extensive activation of diverse sets of innate immune response genes, including those that encode multiple IL-family members, receptors, metabolic regulators, MAPK activators, and lymphocyte signaling molecules. These were among 1564 genes differentially regulated at 2 h postinfection, highlighting a rapid and broad innate immune response to bladder colonization. Integrative systems-level analyses using InnateDB (http://www.innatedb.com) bioinformatics and ingenuity pathway analysis identified multiple distinct biological pathways in the bladder transcriptome with extensive involvement of lymphocyte signaling, cell cycle alterations, cytoskeletal, and metabolic changes. A key regulator of IL activity identified in the transcriptome was IL-10, which was analyzed functionally to reveal marked exacerbation of cystitis in IL-10-deficient mice. Studies of clinical UTI revealed significantly elevated urinary IL-10 in patients with UPEC cystitis, indicating a role for IL-10 in the innate response to human UTI. The whole bladder transcriptome presented in this work provides new insight into the diversity of innate factors that determine UTI on a genome-wide scale and will be valuable for further data mining. Identification of protective roles for other elements in the transcriptome will provide critical new insight into the complex cascade of events that underpin UTI.


Subject(s)
Cystitis/genetics , Cystitis/immunology , Escherichia coli Infections/genetics , Escherichia coli Infections/immunology , Immunity, Innate , Interleukin-10/biosynthesis , Transcriptome/immunology , Uropathogenic Escherichia coli/immunology , Animals , Coculture Techniques , Cystitis/prevention & control , Disease Models, Animal , Escherichia coli Infections/prevention & control , Female , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Humans , Immunity, Innate/genetics , Interleukin-10/blood , Interleukin-10/deficiency , Interleukin-10/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptome/genetics , U937 Cells , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/pathogenicity , Urothelium/immunology , Urothelium/microbiology , Urothelium/pathology
9.
J Biomed Biotechnol ; 2011: 852419, 2011.
Article in English | MEDLINE | ID: mdl-22007147

ABSTRACT

Countless in vitro cell culture models based on the use of epithelial cell types of single lineages have been characterized and have provided insight into the mechanisms of infection for various microbial pathogens. Diverse culture models based on disease-relevant mucosal epithelial cell types derived from gastrointestinal, genitourinary, and pulmonary organ systems have delineated many key host-pathogen interactions that underlie viral, parasitic, and bacterial disease pathogenesis. An alternative to single lineage epithelial cell monoculture, which offers more flexibility and can overcome some of the limitations of epithelial cell culture models based on only single cell types, is coculture of epithelial cells with other host cell types. Various coculture models have been described, which incorporate epithelial cell types in culture combination with a wide range of other cell types including neutrophils, eosinophils, monocytes, and lymphocytes. This paper will summarize current models of epithelial cell coculture and will discuss the benefits and limitations of epithelial cell coculture for studying host-pathogen dynamics in infectious diseases.


Subject(s)
Cell Culture Techniques/methods , Communicable Diseases/microbiology , Communicable Diseases/pathology , Epithelial Cells/microbiology , Epithelial Cells/pathology , Models, Biological , Coculture Techniques , Epithelial Cells/cytology , Host-Pathogen Interactions , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...