Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38673926

ABSTRACT

Acute myeloid leukemia (AML) is a hematological malignancy that is characterized by an expansion of immature myeloid precursors. Despite therapeutic advances, the prognosis of AML patients remains poor and there is a need for the evaluation of promising therapeutic candidates to treat the disease. The objective of this study was to evaluate the efficacy of duocarmycin Stable A (DSA) in AML cells in vitro. We hypothesized that DSA would induce DNA damage in the form of DNA double-strand breaks (DSBs) and exert cytotoxic effects on AML cells within the picomolar range. Human AML cell lines Molm-14 and HL-60 were used to perform 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT), DNA DSBs, cell cycle, 5-ethynyl-2-deoxyuridine (EdU), colony formation unit (CFU), Annexin V, RNA sequencing and other assays described in this study. Our results showed that DSA induced DNA DSBs, induced cell cycle arrest at the G2M phase, reduced proliferation and increased apoptosis in AML cells. Additionally, RNA sequencing results showed that DSA regulates genes that are associated with cellular processes such as DNA repair, G2M checkpoint and apoptosis. These results suggest that DSA is efficacious in AML cells and is therefore a promising potential therapeutic candidate that can be further evaluated for the treatment of AML.


Subject(s)
Apoptosis , Cell Proliferation , Duocarmycins , Leukemia, Myeloid, Acute , Humans , Apoptosis/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Cell Proliferation/drug effects , Duocarmycins/pharmacology , Cell Line, Tumor , DNA Breaks, Double-Stranded/drug effects , HL-60 Cells , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , DNA Damage/drug effects
2.
Int J Mol Sci ; 24(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37511306

ABSTRACT

In the past decade, targeted therapies for solid tumors, including non-small cell lung cancer (NSCLC), have advanced significantly, offering tailored treatment options for patients. However, individuals without targetable mutations pose a clinical challenge, as they may not respond to standard treatments like immune-checkpoint inhibitors (ICIs) and novel targeted therapies. While the mechanism of action of ICIs seems promising, the lack of a robust response limits their widespread use. Although the expression levels of programmed death ligand 1 (PD-L1) on tumor cells are used to predict ICI response, identifying new biomarkers, particularly those associated with the tumor microenvironment (TME), is crucial to address this unmet need. Recently, inflammatory cytokines such as interleukin-1 beta (IL-1ß) have emerged as a key area of focus and hold significant potential implications for future clinical practice. Combinatorial approaches of IL-1ß inhibitors and ICIs may provide a potential therapeutic modality for NSCLC patients without targetable mutations. Recent advancements in our understanding of the intricate relationship between inflammation and oncogenesis, particularly involving the IL-1ß/PD-1/PD-L1 pathway, have shed light on their application in lung cancer development and clinical outcomes of patients. Targeting these pathways in cancers like NSCLC holds immense potential to revolutionize cancer treatment, particularly for patients lacking targetable genetic mutations. However, despite these promising prospects, there remain certain aspects of this pathway that require further investigation, particularly regarding treatment resistance. Therefore, the objective of this review is to delve into the role of IL-1ß in NSCLC, its participation in inflammatory pathways, and its intricate crosstalk with the PD-1/PD-L1 pathway. Additionally, we aim to explore the potential of IL-1ß as a therapeutic target for NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , B7-H1 Antigen/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Immunotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Programmed Cell Death 1 Receptor/genetics , Tumor Microenvironment/genetics , Interleukin-1beta
3.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982542

ABSTRACT

Effects of the tumor microenvironment (TME) stromal cells on progression in thyroid cancer are largely unexplored. Elucidating the effects and underlying mechanisms may facilitate the development of targeting therapy for aggressive cases of this disease. In this study, we investigated the impact of TME stromal cells on cancer stem-like cells (CSCs) in patient-relevant contexts where applying in vitro assays and xenograft models uncovered contributions of TME stromal cells to thyroid cancer progression. We found that TME stromal cells can enhance CSC self-renewal and invasiveness mainly via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. The disruption of Akt signaling could diminish the impact of TME stromal cells on CSC aggressiveness in vitro and reduce CSC tumorigenesis and metastasis in xenografts. Notably, disrupting Akt signaling did not cause detectable alterations in tumor histology and gene expression of major stromal components while it produced therapeutic benefits. In addition, using a clinical cohort, we discovered that papillary thyroid carcinomas with lymph node metastasis are more likely to have elevated Akt signaling compared with the ones without metastasis, suggesting the relevance of Akt-targeting. Overall, our results identify PI3K/Akt pathway-engaged contributions of TME stromal cells to thyroid tumor disease progression, illuminating TME Akt signaling as a therapeutic target in aggressive thyroid cancer.


Subject(s)
Proto-Oncogene Proteins c-akt , Thyroid Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tumor Microenvironment , Signal Transduction , Thyroid Neoplasms/pathology , Phosphatidylinositol 3-Kinase/metabolism , Cell Line, Tumor
4.
Front Oncol ; 13: 1070485, 2023.
Article in English | MEDLINE | ID: mdl-36845698

ABSTRACT

Introduction: Treatment-related toxicity following either chemo- or radiotherapy can create significant clinical challenges for HNSCC cancer patients, particularly those with HPV-associated oropharyngeal squamous cell carcinoma. Identifying and characterizing targeted therapy agents that enhance the efficacy of radiation is a reasonable approach for developing de-escalated radiation regimens that result in less radiation-induced sequelae. We evaluated the ability of our recently discovered, novel HPV E6 inhibitor (GA-OH) to radio-sensitize HPV+ and HPV- HNSCC cell lines to photon and proton radiation. Methods: Radiosensitivity to either photon or proton beams was assessed using various assays such as colony formation assay, DNA damage markers, cell cycle and apoptosis, western blotting, and primary cells. Calculations for radiosensitivity indices and relative biological effectiveness (RBE) were based on the linear quadratic model. Results: Our results showed that radiation derived from both X-ray photons and protons is effective in inhibiting colony formation in HNSCC cells, and that GA-OH potentiated radiosensitivity of the cells. This effect was stronger in HPV+ cells as compared to their HPV- counterparts. We also found that GA-OH was more effective than cetuximab but less effective than cisplatin (CDDP) in enhancing radiosensitivity of HSNCC cells. Further tests indicated that the effects of GA-OH on the response to radiation may be mediated through cell cycle arrest, particularly in HPV+ cell lines. Importantly, the results also showed that GA-OH increases the apoptotic induction of radiation as measured by several apoptotic markers, even though radiation alone had little effect on apoptosis. Conclusion: The enhanced combinatorial cytotoxicity found in this study indicates the strong potential of E6 inhibition as a strategy to sensitize cells to radiation. Future research is warranted to further characterize the interaction of GA-OH derivatives and other E6-specific inhibitors with radiation, as well as its potential to improve the safety and effectiveness of radiation treatment for patients with oropharyngeal cancer.

5.
Front Oncol ; 12: 928545, 2022.
Article in English | MEDLINE | ID: mdl-36119491

ABSTRACT

High-risk human papillomaviruses (HPVs) cause virtually all cervical cancer cases and are also associated with other types of anogenital and oropharyngeal cancers. Normally, HPV exists as a circular episomal DNA in the infected cell. However, in some instances, it integrates into the human genome in such a way as to enable increased expression of viral oncogenes, thereby leading to carcinogenesis. Since viral integration requires breaks in both viral and human genomes, DNA damage likely plays a key role in this critical process. One potentially significant source of DNA damage is exposure to elevated doses of ionizing radiation. Natural background radiation is ubiquitous; however, some populations, including radiological workers, radiotherapy patients, and astronauts, are exposed to significantly higher radiation doses, as well as to different types of radiation such as particle radiation. We hypothesize that ionizing radiation-induced DNA damage facilitates the integration of HPV into the human genome, increasing the risk of developing HPV-related cancers in the exposed population. To test this, we first determined the kinetics of DNA damage in keratinocytes exposed to ionizing radiation (protons) by assessing γ-H2AX foci formation using immunofluorescence (direct damage), and also measured ROS and 8-oxoG levels via DCFDA and Avidin-FITC (indirect damage).As anticipated, direct DNA damage was observed promptly, within 30 min, whereas indirect DNA damage was delayed due to the time required for ROS to accumulate and cause oxidative damage. Although radiation was lethal at high doses, we were able to establish an experimental system where radiation exposure (protons and X-rays) induced DNA damage dose-dependently without causing major cytotoxic effects as assessed by several cytotoxicity assays. Most importantly, we explored the impact of radiation exposure on integration frequency using a clonogenic assay and demonstrated that as predicted, proton-induced DNA damage promotes the integration of HPV-like foreign DNA in oral keratinocytes. Overall, the insights gained from this work enable us to better understand the contribution of radiation exposure and DNA damage to HPV-mediated carcinogenesis and direct us toward strategies aimed at preventing malignancies in HPV-infected individuals.

6.
Pathogens ; 11(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36145390

ABSTRACT

Background: High-titer convalescent plasma given early for COVID-19 may decrease progression into a severe infection. Here, we reported a study of serial antibody measurements in patients who received CP at our center and performed a systematic review of randomized trials on CP. Methods: Our center participated in the Mayo Clinic Expanded Access Program for COVID-19 Convalescent Plasma. Patients diagnosed with COVID-19 by nasopharyngeal polymerase chain reaction at our center between April and August 2020 were included in the study if staffing was available for specimen collection. Through a colloidal gold immunochromatography assay, these patients' IgM and IgG antibody responses were measured at baseline (Day 0) and after transfusion (Day 1, 2, etc.). Donor CP antibody levels were measured as well. Results: 110 serum specimens were obtained from 21 COVID-19 patients, 16 of whom received CP. The median time from developing symptoms to receiving CP was 11 days (range 4−21). In 9 of 14 (64%) cases where both recipient and donor CP antibody levels were tested, donor COVID-19 IgG was lower than that of the recipient. Higher donor antibody levels compared with the recipient (R = 0.71, p < 0.01) and low patient IgG before CP transfusion (p = 0.0108) correlated with increasing patient IgG levels from baseline to Day 1. Among all patients, an increased COVID-19 IgG in the short-term and longitudinally was positively correlated with improved clinical outcomes (ρ = 0.69, p = 0.003 and ρ = 0.58, p < 0.006, respectively). Conclusions: In a real-world setting where donor CP was not screened for the presence of antibodies, CP in donors might have less COVID-19 IgG than in recipients. An increase in patient antibody levels in the short term and longitudinally was associated with improved clinical outcomes.

7.
Nutrients ; 14(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35277064

ABSTRACT

It is unclear how vegetarian dietary patterns influence plasma metabolites involved in biological processes regulating chronic diseases. We sought to identify plasma metabolic profiles distinguishing vegans (avoiding meat, eggs, dairy) from non-vegetarians (consuming ≥28 g/day red meat) of the Adventist Health Study-2 cohort using global metabolomics profiling with ultra-performance liquid chromatography mass spectrometry (UPLC-MS/MS). Differences in abundance of metabolites or biochemical subclasses were analyzed using linear regression models, adjusting for surrogate and confounding variables, with cross-validation to simulate results from an independent sample. Random forest was used as a learning tool for classification, and principal component analysis was used to identify clusters of related metabolites. Differences in covariate-adjusted metabolite abundance were identified in over 60% of metabolites (586/930), after adjustment for false discovery. The vast majority of differentially abundant metabolites or metabolite subclasses showed lower abundance in vegans, including xanthine, histidine, branched fatty acids, acetylated peptides, ceramides, and long-chain acylcarnitines, among others. Many of these metabolite subclasses have roles in insulin dysregulation, cardiometabolic phenotypes, and inflammation. Analysis of metabolic profiles in vegans and non-vegetarians revealed vast differences in these two dietary groups, reflecting differences in consumption of animal and plant products. These metabolites serve as biomarkers of food intake, many with potential pathophysiological consequences for cardiometabolic diseases.


Subject(s)
Diet, Vegan , Vegans , Animals , Chromatography, Liquid , Diet, Vegetarian , Humans , Metabolomics/methods , Tandem Mass Spectrometry , Vegetarians
8.
Adv Pharmacol Pharm Sci ; 2021: 1828792, 2021.
Article in English | MEDLINE | ID: mdl-34746794

ABSTRACT

The COVID-19 pandemic that began in late 2019 continues with new challenges arising due to antigenic drift as well as individuals who cannot or choose not to take the vaccine. There is therefore an urgent need for additional therapies that complement vaccines and approved therapies such as antibodies in the fight to end or slow down the pandemic. SARS-CoV-2 initiates invasion of the human target cell through direct contact between the receptor-binding domain of its Spike protein and its cellular receptor, angiotensin-converting enzyme-2 (ACE2). The ACE2 and S1 RBD interaction, therefore, represents an attractive therapeutic intervention to prevent viral entry and spread. In this study, we developed a proximity-based AlphaScreen™ assay that can be utilized to quickly and efficiently screen for inhibitors that perturb the ACE2 : S1 RBD interaction. We then designed several peptides candidates from motifs in ACE2 and S1 RBD that play critical roles in the interaction, with and without modifications to the native sequences. We also assessed the possibility of reprofiling of candidate small molecules that previously have been shown to interfere with the viral entry of SARS-CoV. Using our optimized AlphaScreen™ assay, we evaluated the activity and specificity of these peptides and small molecules in inhibiting the binding of ACE2 : S1 RBD. This screen identified cepharanthine as a promising candidate for development as a SARS-CoV-2 entry inhibitor.

9.
Front Oncol ; 11: 730412, 2021.
Article in English | MEDLINE | ID: mdl-34490123

ABSTRACT

The treatment landscape of locally advanced HPV-oropharyngeal squamous cell carcinoma (OPSCC) is undergoing transformation. This is because the high cures rates observed in OPSCC are paired with severe treatment-related, long-term toxicities. These significant adverse effects have led some to conclude that the current standard of care is over-treating patients, and that de-intensifying the regimens may achieve comparable survival outcomes with lower toxicities. Consequently, several de-escalation approaches involving locally advanced OPSCC are underway. These include the reduction of dosage and volume of intensive cytotoxic regimens, as well as elimination of invasive surgical procedures. Such de-intensifying treatments have the potential to achieve efficacy and concurrently alleviate morbidity. Targeted therapies, given their overall safer toxicity profiles, also make excellent candidates for de-escalation, either alone or alongside standard treatments. However, their role in these endeavors is currently limited, because few targeted therapies are currently in clinical use for head and neck cancers. Unfortunately, cetuximab, the only FDA-approved targeted therapy, has shown inferior outcomes when paired with radiation as compared to cisplatin, the standard radio-sensitizer, in recent de-escalation trials. These findings indicate the need for a better understanding of OPSCC biology in the design of rational therapeutic strategies and the development of novel, OPSCC-targeted therapies that are safe and can improve the therapeutic index of standard therapies. In this review, we summarize ongoing research on mechanism-based inhibitors in OPSCC, beginning with the salient molecular features that modulate tumorigenic processes and response, then exploring pharmacological inhibition and pre-clinical validation studies of candidate targeted agents, and finally, summarizing the progression of those candidates in the clinic.

10.
Am J Cancer Res ; 11(8): 3956-3979, 2021.
Article in English | MEDLINE | ID: mdl-34522461

ABSTRACT

DNA lesions arise from a combination of physiological/metabolic sources and exogenous environmental influences. When left unrepaired, these alterations accumulate in the cells and can give rise to mutations that change the function of important proteins (i.e. tumor suppressors, oncoproteins), or cause chromosomal rearrangements (i.e. gene fusions) that also result in the deregulation of key cellular molecules. Progressive acquisition of such genetic changes promotes uncontrolled cell proliferation and evasion of cell death, and hence plays a key role in carcinogenesis. Another less-studied consequence of DNA damage accumulating in the host genome is the integration of oncogenic DNA viruses such as Human papillomavirus, Merkel cell polyomavirus, and Hepatitis B virus. This critical step of viral-induced carcinogenesis is thought to be particularly facilitated by DNA breaks in both viral and host genomes. Therefore, the impact of DNA damage on carcinogenesis is magnified in the case of such oncoviruses via the additional effect of increasing integration frequency. In this review, we briefly present the various endogenous and exogenous factors that cause different types of DNA damage. Next, we discuss the contribution of these lesions in cancer development. Finally, we examine the amplified effect of DNA damage in viral-induced oncogenesis and summarize the limited data existing in the literature related to DNA damage-induced viral integration. To conclude, additional research is needed to assess the DNA damage pathways involved in the transition from viral infection to cancer. Discovering that a certain DNA damaging agent increases the likelihood of viral integration will enable the development of prophylactic and therapeutic strategies designed specifically to prevent such integration, with an ultimate goal of reducing or eliminating these viral-induced malignancies.

11.
Virol J ; 18(1): 154, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34301275

ABSTRACT

The COVID-19 pandemic has put healthcare infrastructures and our social and economic lives under unprecedented strain. Effective solutions are needed to end the pandemic while significantly lessening its further impact on mortality and social and economic life. Effective and widely-available vaccines have appropriately long been seen as the best way to end the pandemic. Indeed, the current availability of several effective vaccines are already making a significant progress towards achieving that goal. Nevertheless, concerns have risen due to new SARS-CoV-2 variants that harbor mutations against which current vaccines are less effective. Furthermore, some individuals are unwilling or unable to take the vaccine. As health officials across the globe scramble to vaccinate their populations to reach herd immunity, the challenges noted above indicate that COVID-19 therapeutics are still needed to work alongside the vaccines. Here we describe the impact that neutralizing antibodies have had on those with early or mild COVID-19, and what their approval for early management of COVID-19 means for other viral entry inhibitors that have a similar mechanism of action. Importantly, we also highlight studies that show that therapeutic strategies involving various viral entry inhibitors such as multivalent antibodies, recombinant ACE2 and miniproteins can be effective not only for pre-exposure prophylaxis, but also in protecting against SARS-CoV-2 antigenic drift and future zoonotic sarbecoviruses.


Subject(s)
COVID-19 Drug Treatment , COVID-19/virology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19 Vaccines/pharmacology , Cathepsins/metabolism , Humans , Mutation , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Serine Endopeptidases/drug effects , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism
12.
Molecules ; 26(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070144

ABSTRACT

Advanced cervical cancer is primarily managed using cytotoxic therapies, despite evidence of limited efficacy and known toxicity. There is a current lack of alternative therapeutics to treat the disease more effectively. As such, there have been more research endeavors to develop targeted therapies directed at oncogenic host cellular targets over the past 4 decades, but thus far, only marginal gains in survival have been realized. The E6 oncoprotein, a protein of human papillomavirus origin that functionally inactivates various cellular antitumor proteins through protein-protein interactions (PPIs), represents an alternative target and intriguing opportunity to identify novel and potentially effective therapies to treat cervical cancer. Published research has reported a number of peptide and small-molecule modulators targeting the PPIs of E6 in various cell-based models. However, the reported compounds have rarely been well characterized in animal or human subjects. This indicates that while notable progress has been made in targeting E6, more extensive research is needed to accelerate the optimization of leads. In this review, we summarize the current knowledge and understanding of specific E6 PPI inhibition, the progress and challenges being faced, and potential approaches that can be utilized to identify novel and potent PPI inhibitors for cervical cancer treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy , Protein Interaction Maps , Uterine Cervical Neoplasms/drug therapy , Viral Proteins/metabolism , Antineoplastic Agents/pharmacology , Female , Humans , Protein Interaction Maps/drug effects , Tumor Suppressor Protein p53/metabolism
13.
Oncotarget ; 12(6): 549-561, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33796223

ABSTRACT

The incidence of human papillomavirus-positive head and neck squamous cell carcinoma (HPV+-HNSCC) has increased dramatically over the past decades due to an increase in infection of the oral mucosa by HPV. The etiology of HPV+-HNSCC is linked to expression of the HPV oncoprotein, E6, which influences tumor formation, growth and survival. E6 effects this oncogenic phenotype in part through inhibitory protein-protein interactions (PPIs) and accelerated degradation of proteins with tumor suppressor properties, such as p53 and caspase 8. Interfering with the binding between E6 and its cellular partners may therefore represent a reasonable pharmacological intervention in HPV+ tumors. In this study, we probed a small-molecule library using AlphaScreen™ technology to discover novel E6 inhibitors. Following a cascade of screens we identified and prioritized one hit compound. Structure activity relationship (SAR) studies of this lead uncovered an analog, 30-hydroxygambogic acid (GA-OH), that displayed improved activity. Further testing of this analog in a panel of HPV+ and HPV- cell lines showed good potency and a large window of selectivity as demonstrated by apoptosis induction and significant inhibition of cell growth, cell survival in HPV+ cells. In summary, GA-OH may serve as a starting point for the development of potent E6-specific inhibitors.

14.
Clin Orthop Relat Res ; 479(1): 180-194, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33009230

ABSTRACT

BACKGROUND: Osteosarcoma is the most common type of bone cancer in adolescents. There have been no significant improvements in outcomes since chemotherapy was first introduced. Bupivacaine and lidocaine have been shown to be toxic to certain malignancies. This study evaluates the effect of these medications on two osteosarcoma cell lines. QUESTIONS/PURPOSES: (1) Does incubation of osteosarcoma cells with bupivacaine or lidocaine result in cell death? (2) Does this result from an apoptotic mechanism? (3) Is a specific apoptotic pathway implicated? METHODS: Two cell lines were chosen to account for the inherent heterogeneity of osteosarcoma. UMR-108 is a transplantable cell line that has been used in multiple studies as a primary tumor. MNNG/HOS has a high metastatic rate in vivo. Both cell lines were exposed bupivacaine (0.27, 0.54, 1.08, 2.16, 4.33 and 8.66 mM) and lidocaine (0.66, 1.33, 5.33, 10.66, 21.32 and 42.64 mM) for 24 hours, 48 hours, and 72 hours. These concentrations were determined by preliminary experiments that found the median effective dose was 1.4 mM for bupivacaine and 7.0 mM for lidocaine in both cell lines. Microculture tetrazolium and colony formation assay determined whether cell death occurred. Apoptosis induction was evaluated by phase-contrast micrographs, flow cytometry, DNA fragmentation and reactive oxygen species (ROS). The underlying pathways were analyzed by protein electrophoresis and Western blot. All testing was performed in triplicate and compared with pH-adjusted controls. Quantitative results were analyzed without blinding. RESULTS: Both medications caused cell death in a dose- and time-dependent manner. Exposure to bupivacaine for 24 hours reduced viability of UMR-108 cells by 6 ± 0.75% (95% CI 2.9 to 9.11; p = 0.01) at 1.08 mM and 89.67 ± 1.5% (95% CI 82.2 to 95.5; p < 0.001) at 2.16 mM. Under the same conditions, MNNG/HOS viability was decreased in a similar fashion. After 24 hours, the viability of UMR-108 and MNNG/HOS cells exposed to 5.33 mM of lidocaine decreased by 25.33 ± 8.3% (95% CI 2.1 to 48.49; p = 0.03) and 39.33 ± 3.19% (95% CI 30.46 to 48.21; p < 0.001), respectively, and by 90.67 ± 0.66% (95% CI 88.82 to 92.52; p < 0.001) and 81.6 ± 0.47% (95% CI 79.69 to 82.31; p < 0.001) at 10.66 mM, respectively. After 72 hours, the viability of both cell lines was further reduced. Cell death was consistent with apoptosis based on cell morphology, total number of apoptotic cells and DNA fragmentation. The percentage increase of apoptotic UMR-108 and MNNG/HOS cells confirmed by Annexin-V positivity compared with controls was 21.3 ± 2.82 (95% CI 16.25 to 26.48; p < 0.001) and 21.23 ± 3.23% (95% CI 12.2 to 30.2; p = 0.003) for bupivacaine at 1.08 mM and 25.15 ± 4.38 (95% CI 12.9 to 37.3; p = 0.004) and 9.11 ± 1.74 (95% CI 4.35 to 13.87; p = 0.006) for lidocaine at 5.33 mM. The intrinsic apoptotic pathway was involved as the expression of Bcl-2 and survivin were down-regulated, and Bax, cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase-1 were increased. ROS production increased in the UMR-108 cells but was decreased in the MNNG/HOS cells. CONCLUSION: These findings provide a basis for evaluating these medications in the in vivo setting. Studies should be performed in small animals to determine if clinically relevant doses have a similar effect in vivo. In humans, biopsies could be performed with standard doses of these medications to see if there is a difference in biopsy tract contamination on definitive resection. CLINICAL RELEVANCE: Bupivacaine and lidocaine could potentially be used for their ability to induce and enhance apoptosis in local osteosarcoma treatment. Outcome data when these medications are used routinely during osteosarcoma treatment can be evaluated compared with controls. Further small animal studies should be performed to determine if injection into the tumor, isolated limb perfusion, or other modalities of treatment are viable.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bone Neoplasms/drug therapy , Bupivacaine/pharmacology , Lidocaine/pharmacology , Osteosarcoma/drug therapy , Animals , Apoptosis Regulatory Proteins/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Humans , Osteosarcoma/metabolism , Osteosarcoma/pathology , Rats , Reactive Oxygen Species/metabolism
15.
Nutrients ; 12(12)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266012

ABSTRACT

We sought to determine if DNA methylation patterns differed between vegans and non-vegetarians in the Adventist Health Study-2 cohort. Genome-wide DNA methylation derived from buffy coat was profiled in 62 vegans and 142 non-vegetarians. Using linear regression, methylation of CpG sites and genes was categorized or summarized according to various genic/intergenic regions and CpG island-related regions, as well as the promoter. Methylation of genes was measured as the average methylation of available CpG's annotated to the nominated region of the respective gene. A permutation method defining the null distribution adapted from Storey et al. was used to adjust for false discovery. Differences in methylation of several CpG sites and genes were detected at a false discovery rate < 0.05 in region-specific and overall analyses. A vegan diet was associated predominantly with hypomethylation of genes, most notably methyltransferase-like 1 (METTL1). Although a limited number of differentially methylated features were detected in the current study, the false discovery method revealed that a much larger proportion of differentially methylated genes and sites exist, and could be detected with a larger sample size. Our findings suggest modest differences in DNA methylation in vegans and non-vegetarians, with a much greater number of detectable significant differences expected with a larger sample.


Subject(s)
DNA Methylation , Vegans , Black or African American , Aged , Body Mass Index , Cohort Studies , Diet, Vegan , Diet, Vegetarian , Female , Humans , Linear Models , Male , Middle Aged , Risk Factors , Vegetarians , White People
16.
Sci Rep ; 10(1): 19044, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149215

ABSTRACT

High-risk human papillomaviruses (HPV) are the causative agents of cervical cancer. However, not all infected women develop cervical cancer. Cervical tumorigenesis is characterized by a multifactorial etiology, with oxidative stress (OS) likely playing a major role. In addition to exogenous sources, metabolic processes also contribute to OS. In principle, variability in levels of cervical OS has the potential to influence the likelihood of conversion to cervical cancer. To ask whether such variability indeed existed, we assessed the levels of ROS and the oxidative DNA damage biomarker 8-oxodG in normal non-cancerous cervical tissues and cells obtained from women with uterovaginal pelvic organ prolapse following vaginal hysterectomy. We demonstrated five and ten-fold variability between tissues isolated from the transformation zone (TZ) and ectocervix (EC) of different women, respectively. Despite the greater variability (likely due to differences in tissue composition), the overall pattern of ROS levels in EC tissues mirrored those obtained in their corresponding TZ tissues. Our results also show that the levels of ROS in TZ tissues were always higher than or equal to those found in the respective EC tissues, providing a possible explanation for TZ tissue being the primary target for HPV infection and cervical carcinogenesis. Interestingly, primary keratinocytes isolated and cultured from these cervical specimens also displayed high variability in ROS levels, with some strongly mirroring the levels of ROS observed in their corresponding tissues, while others were less closely associated. Finally, we demonstrated that the levels of DNA damage mirrored the levels of ROS in the cultured primary cells. Understanding the factors and mechanisms that dispose certain individuals to develop cervical cancer has the potential to enable the development of approaches that make the conversion of HPV infection to cancer development even more rare.


Subject(s)
Cervix Uteri/metabolism , Oxidative Stress , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Biomarkers , Cell Transformation, Neoplastic/metabolism , Cells, Cultured , Cervix Uteri/pathology , DNA Damage , Epithelial Cells/metabolism , Female , Humans , Keratinocytes/metabolism , Reactive Oxygen Species/metabolism , Uterine Cervical Neoplasms/etiology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
17.
Curr Treat Options Oncol ; 21(12): 95, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33025260

ABSTRACT

OPINION STATEMENT: Cervical cancer (CC) is most often caused by the human papillomavirus (HPV). In principle, these ties to the virus should make HPV tumors a relatively easy target for clearance by the immune system. However, these HPV-associated tumors have evolved strategies to escape immune attack. Checkpoint inhibition immunotherapy, which has had remarkable success in cancer treatment, has the potential to overcome the immune escape in CC by harnessing the patient's own immune system and priming it to recognize and kill tumors. Recent work involving PD-1/PD-L1 inhibitors in CC lends credence to this belief, as pembrolizumab has shown evidence of clinical efficacy and consequently been granted accelerated approval by the FDA. That being said, the oncologic outcomes following monotherapy with these biologics have mostly been modest and variable, and this can be attributed to alternative resistance mechanisms to tumor response. The use of therapies that stimulate immune responses via checkpoint-independent activation will therefore augment release of T cell inhibition by checkpoint inhibitors for stronger and more sustained clinical responses. Such a combinatorial approach holds promise for weak- or non-responders to checkpoint therapies as supported by evidence from various, recent pre-clinical, and preliminary clinical studies.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/therapy , Female , Humans , Immunity/drug effects , Immunity/immunology , Immunotherapy/methods , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
19.
Epigenomes ; 4(4)2020 Dec.
Article in English | MEDLINE | ID: mdl-33768971

ABSTRACT

Epigenetic studies in animal models have demonstrated that diet affects gene regulation by altering methylation patterns. We interrogated methylomes in humans who have different sources of protein in their diet. We compared methylation of DNA isolated from buffy coat in 38 vegans, 41 pescatarians and 68 nonvegetarians. Methylation data were obtained using Infinium HumanMethylation450 arrays and analyzed using the Partek Genomic software. Differences in differentially methylated sites were small, though with the use of relaxed statistical tests we did identify diet-associated differences. To further test the validity of these observations, we performed separate and independent comparisons of the methylation differences between vegans and nonvegetarians, and between vegans and pescatarians. The detected differences were then examined to determine if they were enriched in specific pathways. Pathway analysis revealed enrichment of several specific processes, including homeobox transcription and glutamate transport. The detected differences in DNA methylation patterns between vegans, pescatarians, and nonvegetarians enabled us to identify 77 CpG sites that may be sensitive to diet and/or lifestyle, though high levels of individual-specific differences were also noted.

20.
Precis Clin Med ; 3(4): 245-259, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33391847

ABSTRACT

A long-term vegetarian diet plays a role in the longevity and maintenance of the healthspan, but the underlying mechanisms for these observations are largely unknown. Particularly, it is not known whether a long-term vegetarian dietary pattern may affect the circulating miRNA expression in such a way as to modulate the healthspan. The Adventist Health Study-2 (AHS-2) cohort includes a large number of older adults who primarily follow vegetarian dietary patterns and reside in Loma Linda, California, one of five "Blue Zones" in the world in which a higher proportion of the population enjoys a longer than average lifespan. We performed miRNA-seq in 96 subjects selected from the AHS-2 cohort with different dietary patterns. We identified several differentially expressed miRNAs between vegetarians and non-vegetarians, which are involved in immune response and cytokine signaling, cell growth and proliferation as well as age-related diseases such as cardiovascular diseases and neurodegenerative diseases. Overall, our study showed that a vegetarian diet modulates aging-associated circulating miRNAs in a sex-dependent manner of differential expression for certain miRNAs, which may be related in a beneficial manner to the healthspan. Further investigation is needed to validate these miRNAs as potential biomarkers for diet-modulated longevity in humans.

SELECTION OF CITATIONS
SEARCH DETAIL
...