Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Entomol ; 56(5): 1420-1427, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31120510

ABSTRACT

Public health authorities recommend a range of nonchemical measures to control blacklegged ticks Ixodes scapularis Say, 1821 (Ixodida: Ixodidae) in residential yards. Here we enumerate these recommendations and assess their relationship to larval tick abundance in 143 yards in Dutchess County, New York, an area with high Lyme disease incidence. We examined the relationship between larval tick abundance and eight property features related to recommendations from public health agencies: presence or absence of outdoor cats, wood piles, trash, stone walls, wood chip barriers separating lawn from adjacent forest, bird feeders, fencing, and prevalence of Japanese barberry (Berberis thunbergii DC [Ranunculales: Berberidaceae]). We assessed abundance of larval ticks using two methods, flagging for questing ticks and visual examination of ticks on white-footed mice Peromyscus leucopus Rafinesque, 1818 (Rodentia: Cricetidae). More questing larvae were found in yards where trash or stone walls were present. These effects were less pronounced as forest area increased within the yard. Counts of larvae per mouse were lower in properties with >75% of the yard fenced than in properties with less fencing. We find partial support for recommendations regarding trash, stone walls, and fencing. We did not detect effects of outdoor cats, bird feeders, barriers, wood piles, or Japanese barberry. There was low statistical power to detect effects of ground barriers (gravel, mulch, or woodchip), which were present in only two properties.


Subject(s)
Environment , Ixodes/physiology , Peromyscus/parasitology , Tick Control/methods , Animals , Built Environment , Ixodes/growth & development , Larva/growth & development , Larva/physiology , New York , Population Density
2.
Ecology ; 89(10): 2841-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18959321

ABSTRACT

The drivers of variable disease risk in complex multi-host disease systems have proved very difficult to identify. Here we test a model that explains the entomological risk of Lyme disease (LD) in terms of host community composition. The model was parameterized in a continuous forest tract at the Cary Institute of Ecosystem Studies (formerly the Institute of Ecosystem Studies) in New York State, U.S.A. We report the results of continuing longitudinal observations (10 years) at the Cary Institute, and of a shorter-term study conducted in forest fragments in LD endemic areas of Connecticut, New Jersey, and New York, USA. Model predictions were significantly correlated with the observed nymphal infection prevalence (NIP) in both studies, although the relationship was stronger in the longer-term Cary Institute study. Species richness was negatively, albeit weakly, correlated with NIP (logistic regression), and there was no relationship between the Shannon diversity index (H') and NIP. Although these results suggest that LD risk is in fact dependent on host diversity, the relationship relies explicitly on the identities and frequencies of host species such that conventional uses of the term biodiversity (i.e., richness, evenness, H') are less appropriate than are metrics that include species identity. This underscores the importance of constructing interaction webs for vertebrates and exploring the direct and indirect effects of anthropogenic stressors on host community composition.


Subject(s)
Arachnid Vectors/microbiology , Disease Reservoirs/veterinary , Ecosystem , Ixodes/microbiology , Lyme Disease/epidemiology , Lyme Disease/veterinary , Zoonoses , Animals , Biodiversity , Connecticut/epidemiology , Humans , Lyme Disease/etiology , Lyme Disease/transmission , Mice , New York/epidemiology , Population Density , Population Dynamics , Prevalence , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...