Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 60(3): 1176-1186, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33006797

ABSTRACT

We report the extension of the class of organotetrel sulfide clusters with further examples of the still rare silicon-based species, synthesized from RSiCl3 with R=phenyl (Ph, I), naphthyl (Np, II), and styryl (Sty, III) with Na2 S. Besides known [(PhSi)4 S6 ] (IV), new compounds [(NpSi)4 S6 ] (1) and [(StySi)4 S6 ] (2) were obtained, the first two of which underwent reactions with [AuCl(PPh3 )] to form ternary complexes. DFT studies of cluster dimers helped us understand the differences between the habit of {Si4 S6 }- and {Sn4 S6 }-based compounds. Crystalline 1 showed a pronounced nonlinear optical response, while for intrinsically amorphous 2, the chemical damage threshold seems to inhibit a corresponding observation. Calculations within the independent particle approximation served to rationalize and compare electronic and optical excitations of [(RSi)4 S6 ] clusters (R=Ph, Np). The calculations reproduced the measured data and allowed for the interpretation of the main spectroscopic features.

2.
ACS Omega ; 4(2): 3850-3859, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-31459595

ABSTRACT

Water splitting is a highly promising, environmentally friendly approach for hydrogen production. It is often discussed in the context of carbon dioxide free combustion and storage of electrical energy after conversion to chemical energy. Since the oxidation and reduction reactions are related to significant overpotentials, the search for suitable catalysts is of particular importance. Ferroelectric materials, for example, lithium niobate, attracted considerable interest in this respect. Indeed, the presence of surfaces with different polarizations and chemistries leads to spatial separation of reduction and oxidation reactions, which are expected to be boosted by the electrons and holes available at the positive and negative surfaces, respectively. Employing the density functional theory and a simplified thermodynamic approach, we estimate the overpotentials related to the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) on both polar LiNbO3 (0001) surfaces. Our calculations performed for ideal surfaces in vacuum predict the lowest overpotential for the hydrogen evolution reaction (0.4 V) and for the oxygen evolution reaction (1.2 V) at the positive and at the negative surfaces, respectively, which are lower than (or comparable with) commonly employed catalysts. However, calculations performed to model the aqueous solution in which the reactions occur reveal that the presence of water substantially increases the required overpotential for the HER, even inverting the favorable polarization direction for oxidation and reduction reactions. In aqueous solution, we predict an overpotential of 1.2 V for the HER at the negative surface and 1.1 V for the OER at the positive surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...