Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 13(4): e0061122, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35943163

ABSTRACT

Combined Antiretroviral therapy (cART) suppresses HIV replication but fails to eradicate the virus, which persists in a small pool of long-lived latently infected cells. Immune activation and residual inflammation during cART are considered to contribute to viral persistence. Galectins, a family of ß-galactoside-binding proteins, play central roles in host-pathogen interactions and inflammatory responses. Depending on their structure, glycan binding specificities and/or formation of distinct multivalent signaling complexes, different members of this family can complement, synergize, or oppose the function of others. Here, we identify a regulatory circuit, mediated by galectin-1 (Gal-1)-glycan interactions, that promotes reversal of HIV-1 latency in infected T cells. We found elevated levels of circulating Gal-1 in plasma from HIV-1-infected individuals, which correlated both with inflammatory markers and the transcriptional activity of the reservoir, as determined by unspliced-RNA (US-RNA) copy number. Proinflammatory extracellular vesicles (EVs) isolated from the plasma of HIV-infected individuals induced Gal-1 secretion by macrophages. Extracellularly, Gal-1 interacted with latently infected resting primary CD4+ T cells and J-LAT cells in a glycan-dependent manner and reversed HIV latency via activation of the nuclear factor κB (NF-κB). Furthermore, CD4+ T cells isolated from HIV-infected individuals showed increased HIV-1 transcriptional activity when exposed to Gal-1. Thus, by modulating reservoir dynamics, EV-driven Gal-1 secretion by macrophages links inflammation with HIV-1 persistence in cART-treated individuals. IMPORTANCE Antiretroviral therapy has led to a dramatic reduction in HIV-related morbidity and mortality. However, cART does not eradicate the virus, which persists in resting CD4+ T cells as the main viral reservoir, consequently requiring lifelong treatment. A major question is how the functional status of the immune system during antiretroviral therapy determines the activity and size of the viral reservoir. In this study, we identified a central role for galectin-1 (Gal-1), a glycan-binding protein released in response to extracellular vesicles (EVs), in modulating the activity of HIV reservoir, thus shaping chronic immune activation in HIV-infected patients. Our work unveils a central role of Gal-1 in linking chronic immune activation and reservoir dynamics, highlighting new therapeutic opportunities in HIV infection.


Subject(s)
Extracellular Vesicles , HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , Galectin 1/therapeutic use , HIV-1/physiology , Humans , Inflammation , RNA , Virus Latency , Virus Replication
2.
J Extracell Vesicles ; 8(1): 1687275, 2019.
Article in English | MEDLINE | ID: mdl-31998449

ABSTRACT

Inflammation is a hallmark of HIV infection. Among the multiple stimuli that can induce inflammation in untreated infection, ongoing viral replication is a primary driver. After initiation of effective combined antiretroviral therapy (cART), HIV replication is drastically reduced or halted. However, even virologically controlled patients may continue to have abnormal levels of inflammation. A number of factors have been proposed to cause inflammation in HIV infection: among others, residual (low-level) HIV replication, production of HIV protein or RNA in the absence of replication, microbial translocation from the gut to the circulation, co-infections, and loss of immunoregulatory responses. Importantly, chronic inflammation in HIV-infected individuals increases the risk for a number of non-infectious co-morbidities, including cancer and cardiovascular disease. Thus, achieving a better understanding of the underlying mechanisms of HIV-associated inflammation in the presence of cART is of utmost importance. Extracellular vesicles have emerged as novel actors in intercellular communication, involved in a myriad of physiological and pathological processes, including inflammation. In this review, we will discuss the role of extracellular vesicles in the pathogenesis of HIV infection, with particular emphasis on their role as inducers of chronic inflammation.

3.
FEBS Lett ; 591(20): 3319-3332, 2017 10.
Article in English | MEDLINE | ID: mdl-28892135

ABSTRACT

High glucose transporter 1 (Glut1) surface expression is associated with increased glycolytic activity in activated CD4+ T cells. Phosphatidylinositide 3-kinases (PI3K) activation measured by p-Akt and OX40 is elevated in CD4+Glut1+ T cells from HIV+ subjects. TCR engagement of CD4+Glut1+ T cells from HIV+ subjects demonstrates hyperresponsive PI3K-mammalian target of rapamycin signaling. High basal Glut1 and OX40 on CD4+ T cells from combination antiretroviral therapy (cART)-treated HIV+ patients represent a sufficiently metabolically active state permissive for HIV infection in vitro without external stimuli. The majority of CD4+OX40+ T cells express Glut1, thus OX40 rather than Glut1 itself may facilitate HIV infection. Furthermore, infection of CD4+ T cells is limited by p110γ PI3K inhibition. Modulating glucose metabolism may limit cellular activation and prevent residual HIV replication in 'virologically suppressed' cART-treated HIV+ persons.


Subject(s)
Anti-HIV Agents/therapeutic use , CD4-Positive T-Lymphocytes/metabolism , Glucose Transporter Type 1/immunology , HIV Infections/metabolism , Receptors, OX40/immunology , Adult , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cell Proliferation , Class Ib Phosphatidylinositol 3-Kinase/genetics , Class Ib Phosphatidylinositol 3-Kinase/immunology , Gene Expression Regulation , Glucose Transporter Type 1/genetics , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/growth & development , Humans , Lymphocyte Activation , Male , Phosphoinositide-3 Kinase Inhibitors , Primary Cell Culture , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, OX40/genetics , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/immunology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...