Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(8): e0237907, 2020.
Article in English | MEDLINE | ID: mdl-32822386

ABSTRACT

Previous work demonstrates that the hearing loss in Alport mice is caused by defects in the stria vascularis. As the animals age, progressive thickening of strial capillary basement membranes (SCBMs) occurs associated with elevated levels of extracellular matrix expression and hypoxia-related gene and protein expression. These conditions render the animals susceptible to noise-induced hearing loss. In an effort to develop a more comprehensive understanding of how the underlying mutation in the COL4A3 gene influences homeostasis in the stria vascularis, we performed vascular permeability studies combined with RNA-seq analysis using isolated stria vascularis from 7-week old wild-type and Alport mice on the 129 Sv background. Alport SCBMs were found to be less permeable than wild-type littermates. RNA-seq and bioinformatics analysis revealed 68 genes were induced and 61 genes suppressed in the stria from Alport mice relative to wild-type using a cut-off of 2-fold. These included pathways involving transcription factors associated with the regulation of pro-inflammatory responses as well as cytokines, chemokines, and chemokine receptors that are up- or down-regulated. Canonical pathways included modulation of genes associated with glucose and glucose-1-PO4 degradation, NAD biosynthesis, histidine degradation, calcium signaling, and glutamate receptor signaling (among others). In all, the data point to the Alport stria being in an inflammatory state with disruption in numerous metabolic pathways indicative of metabolic stress, a likely cause for the susceptibility of Alport mice to noise-induced hearing loss under conditions that do not cause permanent hearing loss in age/strain-matched wild-type mice. The work lays the foundation for studies aimed at understanding the nature of strial pathology in Alport mice. The modulation of these genes under conditions of therapeutic intervention may provide important pre-clinical data to justify trials in humans afflicted with the disease.


Subject(s)
Gene Expression Regulation/genetics , Hearing Loss, Noise-Induced/metabolism , Nephritis, Hereditary/metabolism , Stria Vascularis/metabolism , Animals , Autoantigens/genetics , Autoantigens/metabolism , Basement Membrane/metabolism , Chemokines/genetics , Chemokines/metabolism , Collagen Type IV/genetics , Collagen Type IV/metabolism , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Down-Regulation , Extracellular Matrix/metabolism , Female , Glucose/genetics , Glucose/metabolism , Hearing Loss, Noise-Induced/genetics , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Nephritis, Hereditary/genetics , Nephritis, Hereditary/pathology , RNA-Seq , Signal Transduction/genetics , Stria Vascularis/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics , Up-Regulation
2.
Hear Res ; 390: 107935, 2020 05.
Article in English | MEDLINE | ID: mdl-32234583

ABSTRACT

In 129 Sv autosomal Alport mice, the strial capillary basement membranes (SCBMs) progressively thicken between 5 and 9 weeks of age resulting in a hypoxic microenvironment with metabolic stress and induction of pro-inflammatory cytokines and chemokines. These events occur concomitant with a drop in endocochlear potential and a susceptibility to noise-induced hearing loss under conditions that do not permanently affect age/strain-matched littermates. Here we aimed to gain an understanding of events that occur before the onset of SCBM thickening. Alport stria has normal thickness and shows levels of extracellular matrix (ECM) molecules in the SCBMs commensurate with wild-type mice. Hearing thresholds in the 3-week Alport mice do not differ from those of wild-type mice. We performed RNAseq analysis using RNA from stria vascularis isolated from 3-week Alport mice and wild type littermates. Data was processed using Ingenuity Pathway Analysis software and further distilled using manual procedures. RNAseq analysis revealed significant dysregulation of genes involved in cell adhesion, cell migration, formation of protrusions, and both actin and tubulin cytoskeletal dynamics. Overall, the data suggested changes in the cellular architecture of the stria might be apparent. To test this notion, we performed dual immunofluorescence analysis on whole mounts of the stria vascularis from these same animals stained with anti-isolectin gs-ib4 (endothelial cell marker) and anti-desmin (pericyte marker) antibodies. The results showed evidence of pericyte detachment and migration as well as the formation of membrane ruffling on pericytes in z-stacked confocal images from Alport mice compared to wild type littermates. This was confirmed by TEM analysis. Earlier work from our lab showed that endothelin A receptor blockade prevents SCBM thickening and ECM accumulation in the SCBMs. Treating cultured pericytes with endothelin-1 induced actin cytoskeletal rearrangement, increasing the ratio of filamentous to globular actin. Collectively, these findings suggest that the change in type IV collagen composition in the Alport SCBMs results in cellular insult to the pericyte compartment, activating detachment and altered cytoskeletal dynamics. These events precede SCBM thickening and hearing loss in Alport mice, and thus constitute the earliest event so far recognized in Alport strial pathology.


Subject(s)
Actin Cytoskeleton/ultrastructure , Basement Membrane/ultrastructure , Nephritis, Hereditary/pathology , Pericytes/ultrastructure , Stria Vascularis/ultrastructure , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Animals , Basement Membrane/drug effects , Basement Membrane/metabolism , Cell Adhesion , Cell Movement , Cells, Cultured , Collagen Type IV/genetics , Collagen Type IV/metabolism , Disease Models, Animal , Endothelin-1/pharmacology , Female , Fluorescent Antibody Technique , Gene Expression Profiling , Male , Mice, 129 Strain , Microscopy, Confocal , Microscopy, Electron, Transmission , Nephritis, Hereditary/genetics , Nephritis, Hereditary/metabolism , Pericytes/drug effects , Pericytes/metabolism , RNA-Seq , Receptor, Endothelin A/agonists , Receptor, Endothelin A/genetics , Receptor, Endothelin A/metabolism , Signal Transduction , Stria Vascularis/drug effects , Stria Vascularis/metabolism
3.
Kidney Int ; 94(2): 303-314, 2018 08.
Article in English | MEDLINE | ID: mdl-29759420

ABSTRACT

Lysyl oxidase like-2 (LOXL2) is an amine oxidase with both intracellular and extracellular functions. Extracellularly, LOXL2 promotes collagen and elastin crosslinking, whereas intracellularly, LOXL2 has been reported to modify histone H3, stabilize SNAIL, and reduce cell polarity. Although LOXL2 promotes liver and lung fibrosis, little is known regarding its role in renal fibrosis. Here we determine whether LOXL2 influences kidney disease in COL4A3 (-/-) Alport mice. These mice were treated with a small molecule inhibitor selective for LOXL2 or with vehicle and assessed for glomerular sclerosis and fibrosis, albuminuria, blood urea nitrogen, lifespan, pro-fibrotic gene expression and ultrastructure of the glomerular basement membrane. Laminin α2 deposition in the glomerular basement membrane and mesangial filopodial invasion of the glomerular capillaries were also assessed. LOXL2 inhibition significantly reduced interstitial fibrosis and mRNA expression of MMP-2, MMP-9, TGF-ß1, and TNF-α. LOXL2 inhibitor treatment also reduced glomerulosclerosis, expression of MMP-10, MMP-12, and MCP-1 mRNA in glomeruli, and decreased albuminuria and blood urea nitrogen. Mesangial filopodial invasion of the capillary tufts was blunted, as was laminin α2 deposition in the glomerular basement membrane, and glomerular basement membrane ultrastructure was normalized. There was no effect on lifespan. Thus, LOXL2 plays an important role in promoting both glomerular and interstitial pathogenesis associated with Alport syndrome in mice. Other etiologies of chronic kidney disease are implicated with our observations.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Enzyme Inhibitors/therapeutic use , Glomerular Basement Membrane/pathology , Glomerular Mesangium/pathology , Nephritis, Hereditary/pathology , Amino Acid Oxidoreductases/antagonists & inhibitors , Amino Acid Oxidoreductases/genetics , Animals , Autoantigens/genetics , Collagen Type IV/genetics , Disease Models, Animal , Disease Progression , Enzyme Inhibitors/pharmacology , Fibrosis , Glomerular Basement Membrane/metabolism , Glomerular Mesangium/metabolism , Humans , Laminin/metabolism , Mice , Nephritis, Hereditary/drug therapy , Nephritis, Hereditary/genetics , RNA, Messenger/metabolism , Up-Regulation
4.
PLoS One ; 11(12): e0168343, 2016.
Article in English | MEDLINE | ID: mdl-27959966

ABSTRACT

BACKGROUND: X-linked Alport syndrome (XLAS), caused by mutations in the type IV collagen COL4A5 gene, accounts for approximately 80% of human Alport syndrome. Dogs with XLAS have a similar clinical progression. Prior studies in autosomal recessive Alport mice demonstrated early mesangial cell invasion as the source of laminin 211 in the glomerular basement membrane (GBM), leading to proinflammatory signaling. The objective of this study was to verify this process in XLAS dogs. METHODS: XLAS dogs and WT littermates were monitored with serial clinicopathologic data and kidney biopsies. Biopsies were obtained at set milestones defined by the onset of microalbuminuria (MA), overt proteinuria, onset of azotemia, moderate azotemia, and euthanasia. Kidney biopsies were analyzed by histopathology, immunohistochemistry, and electron microscopy. RESULTS: XLAS dogs showed progressive decrease in renal function and progressive increase in interstitial fibrosis and glomerulosclerosis (based on light microscopy and immunostaining for fibronectin). The only identifiable structural abnormality at the time of microalbuminuria was ultrastructural evidence of mild segmental GBM multilamination, which was more extensive when overt proteinuria developed. Co-localization studies showed that mesangial laminin 211 and integrin α8ß1 accumulated in the GBM at the onset of overt proteinuria and coincided with ultrastructural evidence of mild cellular interpositioning, consistent with invasion of the capillary loops by mesangial cell processes. CONCLUSION: In a large animal model, the induction of mesangial filopodial invasion of the glomerular capillary loop leading to the irregular deposition of laminin 211 is an early initiating event in Alport glomerular pathology.


Subject(s)
Glomerular Mesangium/metabolism , Nephritis, Hereditary/genetics , Nephritis, Hereditary/physiopathology , Pseudopodia/metabolism , Albumins/chemistry , Animals , Biopsy , Collagen Type IV/metabolism , Disease Models, Animal , Disease Progression , Dogs , Glomerular Basement Membrane/pathology , Humans , Immunohistochemistry , Laminin/genetics , Male , Mice , Microscopy, Confocal , Microscopy, Electron , Microscopy, Fluorescence , Mutation , Proteinuria/metabolism
5.
Hear Res ; 341: 100-108, 2016 11.
Article in English | MEDLINE | ID: mdl-27553900

ABSTRACT

Alport syndrome, a type IV collagen disorder, manifests as glomerular disease associated with hearing loss with thickening of the glomerular and strial capillary basement membranes (SCBMs). We have identified a role for endothelin-1 (ET-1) activation of endothelin A receptors (ETARs) in glomerular pathogenesis. Here we explore whether ET-1 plays a role in strial pathology. Wild type (WT) and Alport mice were treated with the ETAR antagonist, sitaxentan. The stria vascularis was analyzed for SCBM thickness and for extracellular matrix (ECM) proteins. Additional WT and Alport mice were exposed to noise or hypoxia and the stria analyzed for hypoxia-related and ECM genes. A strial marginal cell line cultured under hypoxic conditions, or stimulated with ET-1 was analyzed for expression of hypoxia-related and ECM transcripts. Noise exposure resulted in significantly elevated ABR thresholds in Alport mice relative to wild type littermates. Alport stria showed elevated expression of collagen α1(IV), laminin α2, and laminin α5 proteins relative to WT. SCBM thickening and elevated ECM protein expression was ameliorated by ETAR blockade. Stria from normoxic Alport mice and hypoxic WT mice showed upregulation of hypoxia-related, ECM, and ET-1 transcripts. Both ET-1 stimulation and hypoxia up-regulated ECM transcripts in cultured marginal cells. We conclude that ET-1 mediated activation of ETARs on strial marginal cells results in elevated expression of ECM genes and thickening of the SCBMs in Alport mice. SCBM thickening results in hypoxic stress further elevating ECM and ET-1 gene expression, exacerbating strial pathology.


Subject(s)
Endothelin-1/metabolism , Extracellular Matrix/genetics , Nephritis, Hereditary/physiopathology , Stria Vascularis/cytology , Animals , Basement Membrane/pathology , Body Temperature , Capillaries/pathology , Cell Line , Collagen Type IV/metabolism , Disease Models, Animal , Gene Expression Regulation , Hypoxia/pathology , Isoxazoles/chemistry , Laminin/metabolism , Mice , Oxidative Stress , Phenotype , Stria Vascularis/metabolism , Thiophenes/chemistry
6.
Kidney Int ; 90(2): 300-310, 2016 08.
Article in English | MEDLINE | ID: mdl-27165837

ABSTRACT

Recent work demonstrates that Alport glomerular disease is mediated through a biomechanical strain-sensitive activation of mesangial actin dynamics. This occurs through a Rac1/CDC42 cross-talk mechanism that results in the invasion of the subcapillary spaces by mesangial filopodia. The filopodia deposit mesangial matrix proteins in the glomerular basement membrane, including laminin 211, which activates focal adhesion kinase in podocytes culminating in the up-regulation of proinflammatory cytokines and metalloproteinases. These events drive the progression of glomerulonephritis. Here we test whether endothelial cell-derived endothelin-1 is up-regulated in Alport glomeruli and further elevated by hypertension. Treatment of cultured mesangial cells with endothelin-1 activates the formation of drebrin-positive actin microspikes. These microspikes do not form when cells are treated with the endothelin A receptor antagonist sitaxentan or under conditions of small, interfering RNA knockdown of endothelin A receptor mRNA. Treatment of Alport mice with sitaxentan results in delayed onset of proteinuria, normalized glomerular basement membrane morphology, inhibition of mesangial filopodial invasion of the glomerular capillaries, normalization of glomerular expression of metalloproteinases and proinflammatory cytokines, increased life span, and prevention of glomerulosclerosis and interstitial fibrosis. Thus endothelin A receptor activation on mesangial cells is a key event in initiation of Alport glomerular disease in this model.


Subject(s)
Endothelin-1/metabolism , Mesangial Cells/metabolism , Nephritis, Hereditary/metabolism , Podocytes/metabolism , Receptor, Endothelin A/metabolism , Animals , Biomechanical Phenomena , Disease Models, Animal , Endothelial Cells/metabolism , Endothelin Receptor Antagonists/pharmacology , Endothelin Receptor Antagonists/therapeutic use , Fluorescent Antibody Technique , Gene Knockdown Techniques , Glomerular Basement Membrane/metabolism , Hypertension/metabolism , Isoxazoles/pharmacology , Isoxazoles/therapeutic use , Laminin/metabolism , Mesangial Cells/drug effects , Mice , Mice, Inbred C57BL , Nephritis, Hereditary/genetics , Proteinuria/drug therapy , Pseudopodia/physiology , RNA Interference , RNA, Small Interfering/genetics , Receptor, Endothelin A/genetics , Signal Transduction , Thiophenes/pharmacology , Thiophenes/therapeutic use , Up-Regulation
7.
PLoS One ; 9(6): e99083, 2014.
Article in English | MEDLINE | ID: mdl-24915008

ABSTRACT

It has been known for some time that laminins containing α1 and α2 chains, which are normally restricted to the mesangial matrix, accumulate in the glomerular basement membranes (GBM) of Alport mice, dogs, and humans. We show that laminins containing the α2 chain, but not those containing the α1 chain activates focal adhesion kinase (FAK) on glomerular podocytes in vitro and in vivo. CD151-null mice, which have weakened podocyte adhesion to the GBM rendering these mice more susceptible to biomechanical strain in the glomerulus, also show progressive accumulation of α2 laminins in the GBM, and podocyte FAK activation. Analysis of glomerular mRNA from both models demonstrates significant induction of MMP-9, MMP-10, MMP-12, MMPs linked to GBM destruction in Alport disease models, as well as the pro-inflammatory cytokine IL-6. SiRNA knockdown of FAK in cultured podocytes significantly reduced expression of MMP-9, MMP-10 and IL-6, but not MMP-12. Treatment of Alport mice with TAE226, a small molecule inhibitor of FAK activation, ameliorated fibrosis and glomerulosclerosis, significantly reduced proteinuria and blood urea nitrogen levels, and partially restored GBM ultrastructure. Glomerular expression of MMP-9, MMP-10 and MMP-12 mRNAs was significantly reduced in TAE226 treated animals. Collectively, this work identifies laminin α2-mediated FAK activation in podocytes as an important early event in Alport glomerular pathogenesis and suggests that FAK inhibitors, if safe formulations can be developed, might be employed as a novel therapeutic approach for treating Alport renal disease in its early stages.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases/metabolism , Laminin/metabolism , Nephritis, Hereditary/enzymology , Nephritis, Hereditary/etiology , Animals , Biomechanical Phenomena/drug effects , Cells, Cultured , Enzyme Activation/drug effects , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Gene Knockdown Techniques , Glomerular Basement Membrane/drug effects , Glomerular Basement Membrane/enzymology , Glomerular Basement Membrane/pathology , Glomerular Basement Membrane/ultrastructure , I-kappa B Proteins/metabolism , Interleukin-6/metabolism , Kinetics , Matrix Metalloproteinases/metabolism , Mice, Knockout , Morpholines/pharmacology , Morpholines/therapeutic use , NF-KappaB Inhibitor alpha , Nephritis, Hereditary/drug therapy , Nephritis, Hereditary/pathology , Podocytes/enzymology , Podocytes/pathology , Protein Kinase Inhibitors/pharmacology , RNA, Small Interfering/metabolism , Tetraspanin 24/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...