Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Anal Chem ; 93(2): 1016-1024, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33314923

ABSTRACT

We use extreme ultraviolet laser ablation and ionization time-of-flight mass spectrometry (EUV TOF) to map uranium isotopic heterogeneity at the nanoscale (≤100 nm). Using low-enriched uranium fuel pellets that were made by blending two isotopically distinct feedstocks, we show that EUV TOF can map the 235U/238U content in 100 nm-sized pixels. The two-dimensional (2D) isotope maps reveal U ratio variations in sub-microscale to ≥1 µm areas of the pellet that had not been fully exposed by microscale or bulk mass spectrometry analyses. Compared to the ratio distribution measured in a homogeneous U reference material, the ratios in the enriched pellet follow a ∼3× wider distribution. These results indicate U heterogeneity in the fuel pellet from incomplete blending of the different source materials. EUV TOF results agree well with those obtained on the same enriched pellets by nanoscale secondary ionization mass spectrometry (NanoSIMS), which reveals a comparable U isotope ratio distribution at the same spatial scale. EUV TOF's ability to assess and map isotopic heterogeneity at the nanoscale makes it a promising tool in fields such as nuclear forensics, geochemistry, and biology that could benefit from uncovering sub-microscale sources of chemical modifications.

2.
Talanta ; 211: 120720, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32070565

ABSTRACT

The ability to acquire high-quality spatially-resolved mass spectrometry data is sought in many fields of study, but it often comes with high cost of instrumentation and a high level of expertise required. In addition, techniques highly regarded for isotopic analysis applications such as thermal ionization mass spectrometry (TIMS) do not have the ability to acquire spatially-resolved data. Another drawback is that for radioactive materials, which are often of interest for isotopic analysis in geochemistry and nuclear forensics applications, high-end instruments often have restrictions on radioactivity and non-dispersibility requirements. We have applied the use of a traditional microanalysis tool, the focused ion beam/scanning electron microscope (FIB/SEM), for preparation of radioactive materials either for direct analysis by spatially-resolved instruments such as secondary ion mass spectrometry (SIMS) and laser ablation inductively-coupled mass spectrometry (LA-ICP-MS), or similarly to provide some level of spatial resolution to techniques that do not inherently have that ability such as TIMS or quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS). We applied this preparation technique to various uranium compounds, which was especially useful for reducing sample sizes and ensuring non-dispersibility to allow for entry into non-radiological or ultra-trace facilities. Our results show how this site-specific preparation can provide spatial context for nominally bulk techniques such as TIMS and Q-ICP-MS. In addition, the analysis of samples extracted from a uranium dioxide fuel pellet via all methods, but especially NanoSIMS and LA-ICP-MS, showed enrichment heterogeneities that are important for nuclear forensics and are of interest for fuel performance.

3.
Talanta ; 189: 268-273, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30086917

ABSTRACT

Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful method for detection and quantification of nanoparticles. Unfortunately, the linear dynamic range of single particle analysis is hindered by "unruly" transient signals, momentary pulse pile-ups at the electron multiplier detector. This study seeks to extend the dynamic range of ICP-MS nanoparticle quantification via addition of a collision gas in the collision cell of the ICP-MS. The collision gas temporally broadens the nanoparticle signal resulting in decreased pulse pile-up and increased integrated intensity, up to a point where scattering losses begin to dominate. We tested collisional broadening with a dual mode simultaneous secondary electron multiplier (pulse counting switching to analog) and the same detector configured for pulse counting only operation. With no collision gas and the detector operating in its standard dual mode, the data shows a linear response for gold nanoparticles from 20 nm (smallest measured size) to 150 nm. With the addition of helium as a collision gas in the cell, the linear range extends up to 250 nm. The data collected exclusively from the pulse counting mode shows that with no collision gas there is a linear response for gold nanoparticles from 20 nm to 60 nm. While the signal slightly improves with the addition of a collision gas, the linear range fails to extend up to 80 nm, the next largest nanoparticle size in this study. The addition of a collision gas used together with the dual mode detector shows a promising path forward towards mitigating unruly transient signals, improving the dynamic range of nanoparticle quantification.

4.
Phys Chem Chem Phys ; 13(38): 17077-83, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21822506

ABSTRACT

Borohydride salts have been considered as good prospects for transportable hydrogen storage materials, with molecular hydrogen released via hydrolysis. We examine details of the hydration of sodium borohydride by the combination of X-ray absorption spectroscopy and first principles' theory. Compared to solid sodium borohydride, the aqueous sample exhibits an uncharacteristically narrow absorption feature that is shifted to lower energy, and ascribed to the formation of dihydrogen bonds between borohydride and water that weaken the boron-hydrogen covalent bonds. Water also acts to localize the highly excited molecular orbitals of borohydride, causing transitions to excited states with p character to become more intense and a sharp feature, uncharacteristic of tetrahedral molecules, to emerge. The simulations indicate that water preferentially associates with borohydride on the tetrahedral corners and edges.

5.
J Chem Phys ; 134(15): 154503, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21513391

ABSTRACT

Near edge x-ray absorption fine structure (NEXAFS) spectra at the boron K-edge were measured for aqueous boric acid, borate, and polyborate ions, using liquid microjet technology, and compared with simulated spectra calculated from first principles density functional theory in the excited electron and core hole (XCH) approximation. Thermal motion in both hydrated and isolated molecules was incorporated into the calculations by sampling trajectories from quantum mechanics∕molecular mechanics simulations at the experimental temperature. The boron oxide molecules exhibit little spectral change upon hydration, relative to mineral samples. Simulations reveal that water is arranged nearly isotropically around boric acid and sodium borate, but the calculations also indicate that the boron K-edge NEXAFS spectra are insensitive to hydrogen bonding, molecular environment, or salt interactions.

6.
J Chem Phys ; 133(10): 101103, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-20849154

ABSTRACT

Near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the nitrogen and carbon K-edges was used to study the hydration of adenosine triphosphate in liquid microjets. The total electron yield spectra were recorded as a function of concentration, pH, and the presence of sodium, magnesium, and copper ions (Na(+)/Mg(2+)/Cu(2+)). Significant spectral changes were observed upon protonation of the adenine ring, but not under conditions that promote π-stacking, such as high concentration or presence of Mg(2+), indicating that NEXAFS is insensitive to the phenomenon. Intramolecular inner-sphere association of Cu(2+) did create observable broadening of the nitrogen spectrum, whereas outer-sphere association with Mg(2+) did not.


Subject(s)
Adenosine Triphosphate/chemistry , Carbon/chemistry , Nitrogen/chemistry , Copper/chemistry , Hydrogen-Ion Concentration , Magnesium/chemistry , Molecular Structure , Sodium/chemistry , Water/chemistry , X-Ray Absorption Spectroscopy
7.
Proc Natl Acad Sci U S A ; 107(32): 14008-13, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20660784

ABSTRACT

Nitrogen K-edge spectra of aqueous triglycine were measured using liquid microjets, and the effects of Hofmeister-active salts on the spectra were observed. Spectra simulated using density functional theory, sampled from room temperature classical molecular dynamics trajectories, capture all major features in the measured spectra. The spectrum of triglycine in water is quite similar to that in the presence of chaotropic sodium bromide (and other halides), which raises the solubility of proteins. However, a new feature is found when kosmotropic Na(2)SO(3), which lowers solubility, is present; this feature results from excitations of the nitrogen atom in the terminal amino group of triglycine. Both direct interactions between this salt and the protonated amino terminus, as well as corresponding changes in the conformational dynamics of the system, contribute to this new feature. These molecular measurements support a different mechanism for the Hofmeister effect than has previously been suggested based on thermodynamic measurements. It is also shown that near edge X-ray absorption fine structure (NEXAFS) is sensitive to strong direct interaction between certain salts and charged peptides. However, by investigating the sensitivity of NEXAFS to the extreme structural differences between model beta-sheets and alpha-helices, we conclude that this technique is relatively insensitive to secondary structure of peptides and proteins.


Subject(s)
Proteins/chemistry , Salts/chemistry , X-Ray Absorption Spectroscopy/methods , Oligopeptides/chemistry , Peptides/chemistry , Protein Binding , Protein Conformation , Protein Structure, Secondary , Solubility , Solutions
8.
J Phys Chem B ; 114(13): 4702-9, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20235589

ABSTRACT

Despite the obvious significance, the aqueous interactions of peptides remain incompletely understood. Their synthetic analogues called peptoids (poly-N-substituted glycines) have recently emerged as a promising biomimetic material, particularly due to their robust secondary structure and resistance to denaturation. We describe comparative near-edge X-ray absorption fine structure spectroscopy studies of aqueous sarcosine, the simplest peptoid, and alanine, its peptide isomer, interpreted by density functional theory calculations. The sarcosine nitrogen K-edge spectrum is blue shifted with respect to that of alanine, in agreement with our calculations; we conclude that this shift results primarily from the methyl group substitution on the nitrogen of sarcosine. Our calculations indicate that the nitrogen K-edge spectrum of alanine differs significantly between dehydrated and hydrated scenarios, while that of the sarcosine zwitterion is less affected by hydration. In contrast, the computed sarcosine spectrum is greatly impacted by conformational variations, while the alanine spectrum is not. This relates to a predicted solvent dependence for alanine, as compared to sarcosine. Additionally, we show the theoretical nitrogen K-edge spectra to be sensitive to the degree of hydration, indicating that experimental X-ray spectroscopy may be able to distinguish between bulk and partial hydration, such as found in confined environments near proteins and in reverse micelles.


Subject(s)
Alanine/chemistry , Peptides/chemistry , Peptoids/chemistry , Sarcosine/chemistry , Hydrogen Bonding , Micelles , Protein Structure, Secondary , Water/chemistry , X-Ray Absorption Spectroscopy
9.
J Chem Phys ; 131(11): 114509, 2009 Sep 21.
Article in English | MEDLINE | ID: mdl-19778131

ABSTRACT

Near edge x-ray absorption fine structure spectra have been measured at the carbon and nitrogen K-edges of the prototypical aromatic molecule, pyrrole, both in the gas phase and when solvated in water, and compared with spectra simulated using a combination of classical molecular dynamics and first principles density functional theory in the excited state core hole approximation. The excellent agreement enabled detailed assignments. Pyrrole is highly reactive, particularly in water, and reaction products formed by the auto-oligomerization of pyrrole are identified. The solvated spectra have been measured at two different temperatures, indicating that the final states remain largely unaffected by both hydration and temperature. This is somewhat unexpected, since the nitrogen in pyrrole can donate a hydrogen bond to water.

10.
Proc Natl Acad Sci U S A ; 105(19): 6809-12, 2008 May 13.
Article in English | MEDLINE | ID: mdl-18463292

ABSTRACT

We describe an approach for characterizing selective binding between oppositely charged ionic functional groups under biologically relevant conditions. Relative shifts in K-shell x-ray absorption spectra of aqueous cations and carboxylate anions indicate the corresponding binding strengths via perturbations of carbonyl antibonding orbitals. XAS spectra measured for aqueous formate and acetate solutions containing lithium, sodium, and potassium cations reveal monotonically stronger binding of the lighter metals, supporting recent results from simulations and other experiments. The carbon K-edge spectra of the acetate carbonyl feature centered near 290 eV clearly indicate a preferential interaction of sodium versus potassium, which was less apparent with formate. These results are in accord with the Law of Matching Water Affinities, relating relative hydration strengths of ions to their respective tendencies to form contact ion pairs. Density functional theory calculations of K-shell spectra support the experimental findings.

11.
J Chem Phys ; 128(5): 054304, 2008 Feb 07.
Article in English | MEDLINE | ID: mdl-18266447

ABSTRACT

Relaxation of highly vibrationally excited pyrimidine (C(4)N(2)H(4)) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyrimidine (E(')=40 635 cm(-1)) was prepared by 248-nm excimer laser excitation, followed by rapid radiationless relaxation to the ground electronic state. The nascent rotational population distribution (J=58-80) of the 00(0)0 ground state of CO(2) resulting from collisions with hot pyrimidine was probed at short times following the excimer laser pulse. Doppler spectroscopy was used to measure the CO(2) recoil velocity distribution for J=58-80 of the 00(0)0 state. Rate constants and probabilities for collisions populating these CO(2) rotational states were determined. The measured energy transfer probabilities, indexed by final bath state, were resorted as a function of DeltaE to create the energy transfer distribution function, P(E,E(')), from E(')-E approximately 1300-7000 cm(-1). P(E,E(')) is fitted to a single exponential and a biexponential function to determine the average energy transferred in a single collision between pyrimidine and CO(2) and parameters that can be compared to previously studied systems using this technique, pyrazineCO(2), C(6)F(6)CO(2), and methylpyrazineCO(2). P(E,E(')) parameters for these four systems are also compared to various molecular properties of the donor molecules. Finally, P(E,E(')) is analyzed in the context of two models, one which suggests that the shape of P(E,E(')) is primarily determined by the low-frequency out-of-plane donor vibrational modes and one which suggests that the shape of P(E,E(')) can be determined by how the donor molecule final density of states changes with DeltaE.

12.
J Phys Chem A ; 111(51): 13330-8, 2007 Dec 27.
Article in English | MEDLINE | ID: mdl-18047304

ABSTRACT

The quantum yield for HCN formation via 248 nm photodissociation of 2,3-, 2,5-, and 2,6-dimethylpyrazine (DMP, C6N2H8) was measured using diode laser probing of the HCN photoproduct. The total quantum yield is phi = 0.039 +/- 0.07, 0.14 +/- 0.02, and 0.30 +/- 0.06 for 248 nm excitation of 2,3-, 2,5- and 2,6-DMP, respectively. Analysis of the quenching data within the context of a gas kinetic, strong collision model allows an estimate of the rate constant for HCN production via DMP photodissociation, ks = 4.1 x 10(3), 1.0 x 10(3), and 1.3 x 10(4) s(-1) for 2,3-, 2,5- and 2,6-DMP, respectively. Unlike HCN produced from the photodissociation of pyrazine and methylpyrazine, the amount of HCN produced via a prompt, unquenched dissociation channel was essentially zero, suggesting little multiphoton UV absorption. The rate constants for HCN formation together with previously measured rate constants for HCN production from photodissociation of pyrazine and methylpyrazine have been used to investigate possible reaction mechanisms. The position of the methyl group affects the HCN rate constant, suggesting that the mechanism for pyrazine dissociation involves an initial step that is hindered by the addition of the methyl groups. The proposed initial molecular motion of the mechanism, an out-of-plane H atom migration across a N atom, is consistent with (1) the position of the methyl groups, (2) the dissociation lifetime of the various pyrazine molecules studied, and (3) the observed large energy transfer magnitudes from pyrazine near dissociation. These so-called "supercollisions" have been linked to low-frequency, out-of-plane motion, suggesting that the molecular motions leading to efficient energy transfer are the same motions involved in dissociation. In addition, the pyrazine (C4N2H4) 248 nm photoproduct (C3H3N) was identified as acrylonitrile using IR spectroscopy, an observation that aids in understanding the dissociation mechanism.


Subject(s)
Energy Transfer/radiation effects , Pyrazines/chemistry , Pyrazines/radiation effects , Ultraviolet Rays , Acrylonitrile/chemistry , Lasers, Semiconductor , Photochemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...