Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Viruses ; 15(12)2023 12 15.
Article in English | MEDLINE | ID: mdl-38140677

ABSTRACT

Farmed mink are one of few animals in which infection with SARS-CoV-2 has resulted in sustained transmission among a population and spillback from mink to people. In September 2020, mink on a Michigan farm exhibited increased morbidity and mortality rates due to confirmed SARS-CoV-2 infection. We conducted an epidemiologic investigation to identify the source of initial mink exposure, assess the degree of spread within the facility's overall mink population, and evaluate the risk of further viral spread on the farm and in surrounding wildlife habitats. Three farm employees reported symptoms consistent with COVID-19 the same day that increased mortality rates were observed among the mink herd. One of these individuals, and another asymptomatic employee, tested positive for SARS-CoV-2 by real-time reverse transcription PCR (RT-qPCR) 9 days later. All but one mink sampled on the farm were positive for SARS-CoV-2 based on nucleic acid detection from at least one oral, nasal, or rectal swab tested by RT-qPCR (99%). Sequence analysis showed high degrees of similarity between sequences from mink and the two positive farm employees. Epidemiologic and genomic data, including the presence of F486L and N501T mutations believed to arise through mink adaptation, support the hypothesis that the two employees with SARS-CoV-2 nucleic acid detection contracted COVID-19 from mink. However, the specific source of virus introduction onto the farm was not identified. Three companion animals living with mink farm employees and 31 wild animals of six species sampled in the surrounding area were negative for SARS-CoV-2 by RT-qPCR. Results from this investigation support the necessity of a One Health approach to manage the zoonotic spread of SARS-CoV-2 and underscores the critical need for multifaceted public health approaches to prevent the introduction and spread of respiratory viruses on mink farms.


Subject(s)
COVID-19 , Nucleic Acids , Humans , Animals , Michigan/epidemiology , SARS-CoV-2/genetics , Farms , Mink , COVID-19/epidemiology , Genomics , Animals, Wild
2.
Ir Vet J ; 76(Suppl 1): 16, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491296

ABSTRACT

Having entered into its second century, the eradication program for bovine tuberculosis (bTB, caused by Mycobacterium bovis) in the United States of America occupies a position both enviable and daunting. Excepting four counties in Michigan comprising only 6109 km2 (0.06% of US land area) classified as Modified Accredited, as of April 2022 the entire country was considered Accredited Free of bTB by the US Department of Agriculture for cattle and bison. On the surface, the now well-described circumstances of endemic bTB in Michigan, where white-tailed deer (Odocoileus virginianus) serve as a free-ranging wildlife maintenance host, may appear to be the principal remaining barrier to national eradication. However, the situation there is unique in the U.S., and far-removed from the broader issues of bTB control in the remainder of the country. In Michigan, extensive surveillance for bTB in deer over the last quarter century, and regulatory measures to maximize the harvest of publicly-owned wildlife, have been implemented and sustained. Prevalence of bTB in deer has remained at a low level, although not sufficiently low to eliminate cattle herd infections. Public attitudes towards bTB, cattle and deer, and their relative importance, have been more influential in the management of the disease than any limitations of biological science. However, profound changes in the demographics and social attitudes of Michigan's human population are underway, changes which are likely to force a critical reevaluation of the bTB control strategies thus far considered integral. In the rest of the U.S. where bTB is not self-sustaining in wildlife, changes in the scale of cattle production, coupled with both technical and non-technical issues have created their own substantial challenges. It is against this diverse backdrop that the evolution of whole genome sequencing of M. bovis has revolutionized understanding of the history and ecology of bTB in Michigan, resolved previously undiscernible epidemiological puzzles, provided insights into zoonotic transmission, and unified eradication efforts across species and agencies. We describe the current status of bTB eradication in the U.S., how circumstances and management have changed, what has been learned, and what remains more elusive than ever.

3.
Trop Med Infect Dis ; 2(3)2017 Aug 21.
Article in English | MEDLINE | ID: mdl-30270897

ABSTRACT

Bait stations for distribution of oral rabies vaccine baits are designed for rabies management in highly-developed areas where traditional distribution of oral rabies vaccine baits may be difficult. As part of national efforts to contain and eliminate the raccoon (Procyon lotor) variant of the rabies virus (raccoon rabies) in the eastern United States, the United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services program, distributed vaccine baits by bait stations experimentally and operationally in Massachusetts during 2006-present, and in Florida during 2009⁻2015. In Massachusetts, a rabies virus-neutralizing antibody (RVNA) response of 42.1% for raccoons captured in areas baited with high density bait stations during 2011⁻2015 was achieved, compared with 46.2% in areas baited by hand, suggesting the continuation of this as a strategy for the oral rabies vaccination (ORV) program there, and for similar locations. Non-target competition for vaccine baits is problematic, regardless of distribution method. In Massachusetts, bait station visitation rates for targeted raccoons and non-target opossums (Didelphis virginiana) were similar (1.18:1) during 2006⁻2009 (p > 0.05). Bait station modifications for reducing non-target uptake were tested, and in Massachusetts, reduced non-target bait access was achieved with two design alternatives (p < 0.001). However, no difference was noted between the control and these two alternative designs in Florida. Due to ongoing trials of new vaccines and baits, the bait station performance of an adenovirus rabies glycoprotein recombinant vaccine bait, ONRAB® bait (Artemis Technologies, Guelph, ON, Canada) and a vaccinia-rabies glycoprotein recombinant vaccine bait, RABORAL V-RG®bait (Merial Limited, Athens, GA, USA), was compared. While uptake of the ONRAB bait was greater in Massachusetts (p < 0.001) in this limited trial, both types performed equally well in Florida. Since bait station tampering or theft as well as potential human bait contacts has been problematic, performance of camouflaged versus unpainted white bait stations was analyzed in terms of internal temperatures and maintaining a stable bait storage environment. In Massachusetts, camouflaged bait station interiors did not reach higher average temperatures than plain white bait stations in partially- or fully-shaded locations, while in Florida, camouflaged bait stations were significantly warmer in light exposure categories (p < 0.05). As ORV operations expand into more heavily-urbanized areas, bait stations will be increasingly important for vaccine bait distribution, and continued refinements in the strategy will be key to that success.

4.
Trop Med Infect Dis ; 2(3)2017 Aug 22.
Article in English | MEDLINE | ID: mdl-30270898

ABSTRACT

Efforts to eliminate the raccoon variant of the rabies virus (raccoon rabies) in the eastern United States by USDA, APHIS, Wildlife Services and cooperators have included the distribution of oral rabies vaccine baits from polyvinyl chloride (PVC) bait stations in west-central Florida from 2009 to 2015. Achieving sufficient vaccine bait uptake among urban raccoons is problematic, given limitations on aerial and vehicle-based bait distribution for safety and other reasons. One or three bait stations/km² were deployed across four 9-km² sites within rural and urban sites in Pasco and Pinellas Counties, Florida. Based on tetracycline biomarker analysis, bait uptake was only significantly different among the urban (Pinellas County) high and low bait station densities in 2012 (p = 0.0133). Significant differences in RVNA were found between the two bait station densities for both urban 2011 and 2012 samples (p = 0.0054 and p = 0.0031). Landscape differences in terms of urban structure and human population density may modify raccoon travel routes and behavior enough for these differences to emerge in highly urbanized Pinellas County, but not in rural Pasco County. The results suggest that, in urban settings, bait stations deployed at densities of >1/km² are likely to achieve higher seroprevalence as an index of population immunity critical to successful raccoon rabies control.

SELECTION OF CITATIONS
SEARCH DETAIL
...