Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(24): 9522-9530, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35695088

ABSTRACT

The polar magnetic chalcogenide phase Ba5Fe2ZnIn4S15 was synthesized and its structure was solved by single crystal XRD. It is the first member with a 3d magnetic metal (Fe3+) in the Pb5ZnGa6S15-type structure family of wide bandgap materials with non-linear optical properties. The three-dimensional framework possesses a low dimensional magnetic character through the presence of weakly interacting zig-zag chains made of corner-sharing FeS4 tetrahedra forming chain 1, [FeS2]-∞. The latter chains are separated by InS4 tetrahedra providing weak magnetic super-super exchanges between them. The framework is also constituted by chain 2, [In3Zn1S9]7-∞ (chain of T2-supertetrahedra) extended similarly to chain 1 along the direction c and connected through InS4 tetrahedra. Symmetry analysis shows that the intrinsic polarization observed in this class of materials is mostly due to the anionic framework. Preliminary magnetic measurements and density functional theory calculations suggest dominating antiferromagnetic interactions with strong super-exchange coupling within the Fe-chains.

2.
Inorg Chem ; 59(9): 5907-5917, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32319754

ABSTRACT

Mixed-anion compounds are among the most promising systems to design functional materials with enhanced properties. In particular, heteroleptic environments around transition metals allow tuning of the polarity or band-gap engineering for instance. We present the original oxysulfide Ba5(VO2S2)2(S2)2, the fifth member in the quaternary system Ba-V-S-O. It exhibits the mixed-anion building units V5+O2S2 and isolated disulfide pairs (S2)2-. The structure is solved by combining single-crystal and powder X-ray diffraction and transmission electron microscopy. First-principles calculations were combined in order to highlight the anion roles. In particular, our density functional theory study shows that the 3p states of the disulfide pairs dictate the band gap. In this study, we point out anionic tools for band-gap engineering that can be useful for the design of phases for numerous applications. Finally, third harmonic generation (THG) was measured and compared to the large THG observed for Cu2O, which reveals the potential for nonlinear-optical properties that should be further investigated.

3.
Adv Sci (Weinh) ; 3(8): 1600044, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27818909

ABSTRACT

The major advantage of Mg batteries relies on their promise of employing an Mg metal negative electrode, which offers much higher energy density compared to graphitic carbon. However, the strong coulombic interaction of Mg2+ ions with anions leads to their sluggish diffusion in the solid state, which along with a high desolvation energy, hinders the development of positive electrode materials. To circumvent this limitation, Mg metal negative electrodes can be used in hybrid systems by coupling an Li+ insertion cathode through a dual salt electrolyte. Two "high voltage" Prussian blue analogues (average 2.3 V vs Mg/Mg2+; 3.0 V vs Li/Li+) are investigated as cathode materials and the influence of structural water is shown. Their electrochemical profiles, presenting two voltage plateaus, are explained based on the two unique Fe bonding environments. Structural water has a beneficial impact on the cell voltage. Capacities of 125 mAh g-1 are obtained at a current density of 10 mA g-1 (≈C/10), while stable performance up to 300 cycles is demonstrated at 200 mA g-1 (≈2C). The hybrid cell design is a step toward building a safe and high density energy storage system.

4.
Chem Commun (Camb) ; 52(84): 12458-12461, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27709189

ABSTRACT

The well-known all phenyl complex (APC) electrolyte for magnesium batteries is studied for the first time at high temperature using tetraglyme as a solvent. Combined with a molybdenum current collector, this enables the examination of positive electrode materials for Mg batteries at temperatures as high as 180 °C and up to 2 V vs. Mg, allowing discovery of the auspicious properties of CuS as a conversion cathode.

5.
Angew Chem Int Ed Engl ; 54(11): 3431-48, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25653194

ABSTRACT

Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries.

6.
Chem Commun (Camb) ; (40): 6062-4, 2009 Oct 28.
Article in English | MEDLINE | ID: mdl-19809644

ABSTRACT

A new polyoxometalate-based organic-inorganic platform has been designed for further facile derivatization and covalent attachment of organic linkers; this is exemplified by the grafting of a polypyridyl ligand.

SELECTION OF CITATIONS
SEARCH DETAIL
...