Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 6(1): 137, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30563574

ABSTRACT

Mutations in MATR3 have been associated with amyotrophic lateral sclerosis (ALS) as well as a form of distal myopathy termed vocal cord pharyngeal distal myopathy (VCPDM). To begin to understand how mutations in MATR3 may cause disease, here we provide initial characterization of transgenic (Tg) mice expressing human wild-type (WT) MATR3 (MATR3WT) and ALS-mutant F115C MATR3 (MATR3F115C) proteins under the control of the mouse prion promoter (MoPrP). For each construct, we established multiple independent lines of mice that stably transmitted the transgene. Unexpectedly, for all stably-transmitting lines examined, MATR3 transgenic mRNA expression was more robust in muscle, with minimal expression in spinal cord. The levels of transgenic mRNA in muscle did not differ between mice from our lead MATR3F115C line and lead MATR3WT line, but mice from the lead MATR3F115C line had significantly higher levels of MATR3 protein in muscle over the lead MATR3WT line. Mice from the three independent, established lines of MATR3F115C mice developed weakness in both fore- and hind-limbs as early as < 1 months of age; whereas, MATR3WT mice aged to > 20 months were not overtly distinguishable from non-transgenic (NT) littermates based on basic motor phenotype. Muscle of both MATR3WT and MATR3F115C mice showed vacuoles by 2 months of age which worsened by ~ 10 months, but vacuolation was noticeably more severe in MATR3F115C mice. Overall, our results indicate that increasing the levels of MATR3 in muscle can cause pathologic changes associated with myopathy, with MATR3F115C expression causing overt muscle atrophy and a profound motor phenotype. The findings suggest that analysis of muscle pathology in individuals harboring ALS-linked MATR3 mutations should be routinely considered.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Muscle, Skeletal/pathology , Mutation/genetics , Nuclear Matrix-Associated Proteins/genetics , RNA-Binding Proteins/genetics , Spinal Cord/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/physiopathology , Analysis of Variance , Animals , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Mice , Mice, Transgenic , Motor Activity/genetics , Nuclear Matrix-Associated Proteins/metabolism , Pregnancy Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism
2.
Mol Cell Neurosci ; 92: 17-26, 2018 10.
Article in English | MEDLINE | ID: mdl-29859891

ABSTRACT

Loss-of-function mutations in ATP13A2 are associated with three neurodegenerative diseases: a rare form of Parkinson's disease termed Kufor-Rakeb syndrome (KRS), a lysosomal storage disorder termed neuronal ceroid lipofuscinosis (NCL), and a form of hereditary spastic paraplegia (HSP). Furthermore, recent data suggests that heterozygous carriers of mutations in ATP13A2 may confer risk for the development of Parkinson's disease, similar to the association of mutations in glucocerebrosidase (GBA) with both Parkinson's disease and Gaucher's disease, a lysosomal storage disorder. Mutations in ATP13A2 are generally thought to be loss of function; however, the lack of human autopsy tissue has prevented the field from determining the pathological consequences of losing functional ATP13A2. We and others have previously neuropathologically characterized mice completely lacking murine Atp13a2, demonstrating the presence of lipofuscinosis within the brain - a key feature of NCL, one of the diseases to which ATP13A2 mutations have been linked. To determine if loss of one functional Atp13a2 allele can serve as a risk factor for disease, we have now assessed heterozygous Atp13a2 knockout mice for key features of NCL. In this report, we demonstrate that loss of one functional Atp13a2 allele leads to both microgliosis and astrocytosis in multiple brain regions compared to age-matched controls; however, levels of lipofuscin were only modestly elevated in the cortex of heterozygous Atp13a2 knockout mice over controls. This data suggests the possibility that partial loss of ATP13A2 causes inflammatory changes within the brain which appear to be independent of robust lipofuscinosis. This study suggests that heterozygous loss-of-function mutations in ATP13A2 are likely harmful and indicates that glial involvement in the disease process may be an early event that positions the CNS for subsequent disease development.


Subject(s)
Adenosine Triphosphatases/genetics , Gliosis/genetics , Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Adenosine Triphosphatases/metabolism , Animals , Brain/metabolism , Brain/pathology , Gliosis/metabolism , Heterozygote , Lipofuscin/metabolism , Loss of Function Mutation , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Neuronal Ceroid-Lipofuscinoses/metabolism , Proton-Translocating ATPases
3.
Acta Neuropathol Commun ; 5(1): 97, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29237481

ABSTRACT

The authors are retracting this article. The article describes mice expressing wild-type human MATR3. However, since publication the authors have become aware that all of the lines of mice described express human MATR3 containing the F115C mutation. Transgenic mice expressing wild-type and mutant Matrin were created simultaneously in their laboratory and, at a crucial stage of generating the DNA for embryo injection, as confirmed by an investigation by the University of Florida, the DNA preparations were accidentally mislabelled. All of the founders created were mosaic, requiring extensive breeding to isolate stable lines. Mice mislabelled as expressing wild-type MATR3 were the first to produce lines that stably transmitted the transgene and thus were the first to be characterized. However, as lines of mice that were mislabelled as expressing the mutant (F115C) MATR3 were ultimately established, the data began to suggest that an error had been made. Sequence analysis of amplified tail DNA from mice descended from the lines reported in the article have revealed that they express the F115C variant. The data described are therefore an accurate description of the pathology of mice that express the F115C variant of MATR3, but not of mice expressing wild-type MATR3. The authors are preparing a new manuscript reporting data from both mice expressing the F115C variant of MATR3 and mice expressing wild-type MATR3.

4.
Acta Neuropathol Commun ; 4(1): 122, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27863507

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of upper and lower motor neurons. Mutations in the gene encoding the nuclear matrix protein Matrin 3 have been found in familial cases of ALS, as well as autosomal dominant distal myopathy with vocal cord and pharyngeal weakness. We previously found that spinal cord and muscle, organs involved in either ALS or distal myopathy, have relatively lower levels of Matrin 3 compared to the brain and other peripheral organs in the murine system. This suggests that these organs may be vulnerable to any changes in Matrin 3. In order to determine the role of Matrin 3 in these diseases, we created a transgenic mouse model for human wild-type Matrin 3 using the mouse prion promoter (MoPrP) on a FVB background.We identified three founder transgenic lines that produced offspring in which mice developed either hindlimb paresis or paralysis with hindlimb and forelimb muscle atrophy. Muscles of affected mice showed a striking increase in nuclear Matrin 3, as well as the presence of rounded fibers, vacuoles, nuclear chains, and subsarcolemmal nuclei. Immunoblot analysis of the gastrocnemius muscle from phenotypic mice showed increased levels of Matrin 3 products migrating at approximately 120 (doublet), 90, 70, and 55 kDa. While there was no significant change in the levels of Matrin 3 in the spinal cord in the phenotypic mice, the ventral horn contained individual cells with cytoplasmic redistribution of Matrin 3, as well as gliosis. The phenotypes of these mice indicate that dysregulation of Matrin 3 levels is deleterious to neuromuscular function.


Subject(s)
Distal Myopathies/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Paresis/metabolism , RNA-Binding Proteins/metabolism , Animals , Cell Nucleus/metabolism , Cell Nucleus/pathology , Cytoplasm/metabolism , Cytoplasm/pathology , Disease Models, Animal , Distal Myopathies/pathology , Female , Gliosis/metabolism , Gliosis/pathology , Humans , Male , Mice, Transgenic , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Nuclear Matrix-Associated Proteins/genetics , Paresis/pathology , Phenotype , RNA-Binding Proteins/genetics , Species Specificity , Spinal Cord/metabolism , Spinal Cord/pathology
5.
J Comp Neurol ; 524(14): 2740-52, 2016 10 01.
Article in English | MEDLINE | ID: mdl-26878116

ABSTRACT

Mutations in the MATR3 gene encoding the nucleotide binding protein Matrin 3 have recently been identified as causing a subset of familial amyotrophic lateral sclerosis (fALS) and more rarely causing distal myopathy. Translating the identification of MATR3 mutations into an understanding of disease pathogenesis and the creation of mouse models requires a complete understanding of normal Matrin 3 levels and distribution in vivo. Consequently, we examined the levels of murine Matrin 3 in body tissues and regions of the central nervous system (CNS). We observed a significant degree of variability in Matrin 3 protein levels among different tissues of adult animals, with the highest levels found in reproductive organs and the lowest in muscle. Within the adult CNS, Matrin 3 levels were lowest in spinal cord. Further, we found that Matrin 3 declines significantly in CNS through early development and young adulthood before stabilizing. As previously reported, antibodies to Matrin 3 primarily stain nuclei, but the intensity of staining was not uniform in all nuclei. The low levels of Matrin 3 in spinal cord and muscle could mean that that these tissues are particularly vulnerable to alterations in Matrin 3 function. Our study is the first to characterize endogenous Matrin 3 in rodents across the lifespan, providing the groundwork for deciphering disease mechanisms and developing mouse models of MATR3-linked ALS. J. Comp. Neurol. 524:2740-2752, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Aging/metabolism , Brain/growth & development , Brain/metabolism , Nuclear Matrix-Associated Proteins/biosynthesis , RNA-Binding Proteins/biosynthesis , Spinal Cord/growth & development , Spinal Cord/metabolism , Animals , Central Nervous System/growth & development , Central Nervous System/metabolism , Female , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...