Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 47(1): 114-25, 2008 May 12.
Article in English | MEDLINE | ID: mdl-18242038

ABSTRACT

Ferric hexacyanoferrate (Fe4III[FeII(CN)6]3), also known as insoluble Prussian blue (PB) is the active pharmaceutical ingredient (API) of the drug product, Radiogardase. Radiogardase is the first FDA approved medical countermeasure for the treatment of internal contamination with radioactive cesium (Cs) or thallium in the event of a major radiological incident such as a "dirty bomb". A number of pre-clinical and clinical studies have evaluated the use of PB as an investigational decorporation agent to enhance the excretion of metal cations. There are few sources of published in vitro data that detail the binding capacity of cesium to insoluble PB under various chemical and physical conditions. The study objective was to determine the in vitro binding capacity of PB APIs and drug products by evaluating certain chemical and physical factors such as medium pH, particle size, and storage conditions (temperature). In vitro experimental conditions ranged from pH 1 to 9, to cover the range of pH levels that PB may encounter in the gastrointestinal (GI) tract in humans. Measurements of cesium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time using a validated atomic emission spectroscopy (AES) method. The results indicated that pH, exposure time, storage temperature (affecting moisture content) and particle size play significant roles in the cesium binding to both the PB API and the drug product. The lowest cesium binding was observed at gastric pH of 1 and 2, whereas the highest cesium binding was observed at physiological pH of 7.5. It was observed that dry storage conditions resulted in a loss of moisture from PB, which had a significant negative effect on the PB cesium binding capacity at time intervals consistent with gastric residence. Differences were also observed in the binding capacity of PB with different particle sizes. Significant batch to batch differences were also observed in the binding capacity of some PB API and drug products. Our results suggest that certain physiochemical properties affect the initial binding capacity and the overall binding capacity of PB APIs and drug products during conditions that simulated gastric and GI residence time. These physiochemical properties can be utilized as quality attributes to monitor and predict drug product quality under certain manufacturing and storage conditions and may be utilized to enhance the clinical efficacy of PB.


Subject(s)
Cesium/chemistry , Ferrocyanides/chemistry , Cesium/metabolism , Ferrocyanides/metabolism , Gastrointestinal Tract/metabolism , Humans , Hydrogen-Ion Concentration , Particle Size
2.
Int J Pharm ; 353(1-2): 187-94, 2008 Apr 02.
Article in English | MEDLINE | ID: mdl-18226478

ABSTRACT

Ferric hexacyanoferrate, (Fe(4)(III)[Fe(II)(CN)(6)](3)), also known as insoluble Prussian blue (PB), is the active pharmaceutical ingredient (API) of Radiogardase which is the first approved drug product (DP) for treatment of thallium and radiocesium poisoning. The aim of this study is (1) to determine the in vitro thallium binding capacity and binding rates of insoluble PB; and (2) to evaluate the effect of physiological pH conditions, PB particle size and storage conditions on the binding to PB. Experimental pH levels from 1.0 to 7.5 were used to cover the range of pH levels that PB may encounter when traveling through the gastrointestinal (GI) tract in humans. Measurements of thallium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time. PB was found to have a binding capacity of approximately 1400 mg/g at pH 7.5. When the pH decreased, the binding decreased as well. The results indicated that the hydration state of PB influences the thallium binding process. It was also found that there exits a direct correlation between the moisture loss in PB and the thallium binding rate constant. The PB with 17 mol of water had a binding rate constant of 0.52, which was reduced to 0.32 when PB was dehydrated to 2.5 mol of water. Significant differences were observed in both binding capacity and binding rate constant among PB fractions with different particle size ranges. PB fraction with particle size of 220-1000 microm had a binding rate constant of 0.43, which increased to 0.64 when the particle size was reduced to 32-90 microm. Batch-to-batch variation in thallium binding was also observed among the APIs and the DPs and this was related to particle size and hydration state. These findings can be utilized to evaluate and predict drug product quality under certain manufacturing and dry storage conditions.


Subject(s)
Ferrocyanides/chemistry , Thallium/chemistry , Hydrogen-Ion Concentration , Particle Size
3.
J Pharm Sci ; 96(6): 1451-67, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17238204

ABSTRACT

This document provides information for the Pharmaceutical Industry and the Federal Drug Administration (FDA) regarding the selection of suitable particle-size analysis techniques, development and validation of particle-size methods, and the establishment of acceptance criteria for the particle size of drug substances used in oral solid-dosage forms. The document is intended for analysts knowledgeable in the techniques necessary to conduct particle-size characterization (a table of acronyms is provided at the end of the document). It is acknowledged that each drug substance, formulation, and manufacturing process is unique and that multiple techniques and instruments are available to the analyst.


Subject(s)
Particle Size , Pharmaceutical Preparations/chemistry , Technology, Pharmaceutical/methods , Administration, Oral , Artifacts , Drug Industry , Microscopy , Scattering, Radiation , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...