Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Forensic Sci Int Genet ; 69: 103000, 2024 03.
Article in English | MEDLINE | ID: mdl-38199167

ABSTRACT

In the absence of a suspect the forensic aim is investigative, and the focus is one of discerning what genotypes best explain the evidence. In traditional systems, the list of candidate genotypes may become vast if the sample contains DNA from many donors or the information from a minor contributor is swamped by that of major contributors, leading to lower evidential value for a true donor's contribution and, as a result, possibly overlooked or inefficient investigative leads. Recent developments in single-cell analysis offer a way forward, by producing data capable of discriminating genotypes. This is accomplished by first clustering single-cell data by similarity without reference to a known genotype. With good clustering it is reasonable to assume that the scEPGs in a cluster are of a single contributor. With that assumption we determine the probability of a cluster's content given each possible genotype at each locus, which is then used to determine the posterior probability mass distribution for all genotypes by application of Bayes' rule. A decision criterion is then applied such that the sum of the ranked probabilities of all genotypes falling in the set is at least 1-α. This is the credible genotype set and is used to inform database search criteria. Within this work we demonstrate the salience of single-cell analysis by performance testing a set of 630 previously constructed admixtures containing up to 5 donors of balanced and unbalanced contributions. We use scEPGs that were generated by isolating single cells, employing a direct-to-PCR extraction treatment, amplifying STRs that are compliant with existing national databases and applying post-PCR treatments that elicit a detection limit of one DNA copy. We determined that, for these test data, 99.3% of the true genotypes are included in the 99.8% credible set, regardless of the number of donors that comprised the mixture. We also determined that the most probable genotype was the true genotype for 97% of the loci when the number of cells in a cluster was at least two. Since efficient investigative leads will be borne by posterior mass distributions that are narrow and concentrated at the true genotype, we report that, for this test set, 47,900 (86%) loci returned only one credible genotype and of these 47,551 (99%) were the true genotype. When determining the LR for true contributors, 91% of the clusters rendered LR>1018, showing the potential of single-cell data to positively affect investigative reporting.


Subject(s)
DNA Fingerprinting , Microsatellite Repeats , Humans , DNA Fingerprinting/methods , Bayes Theorem , Genotype , DNA/genetics , Likelihood Functions
2.
PLoS One ; 18(9): e0290974, 2023.
Article in English | MEDLINE | ID: mdl-37669287

ABSTRACT

The outbreak of a novel coronavirus causing severe acute respiratory syndrome in December 2019 has escalated into a worldwide pandemic. In this work, we propose a compartmental model to describe the dynamics of transmission of infection and use it to obtain the optimal vaccination control. The model accounts for the various stages of the vaccination, and the optimisation is focused on minimising the infections to protect the population and relieve the healthcare system. As a case study, we selected the Republic of Ireland. We use data provided by Ireland's COVID-19 Data-Hub and simulate the evolution of the pandemic with and without the vaccination in place for two different scenarios, one representative of a national lockdown situation and the other indicating looser restrictions in place. One of the main findings of our work is that the optimal approach would involve a vaccination programme where the older population is vaccinated in larger numbers earlier while simultaneously part of the younger population also gets vaccinated to lower the risk of transmission between groups. We compare our simulated results with those of the vaccination policy taken by the Irish government to explore the advantages of our optimisation method. Our comparison suggests that a similar reduction in cases may have been possible even with a reduced set of vaccinations available for use.


Subject(s)
COVID-19 , Humans , Communicable Disease Control , SARS-CoV-2 , Vaccination , Age Factors
3.
J Vis Exp ; (193)2023 03 24.
Article in English | MEDLINE | ID: mdl-37036235

ABSTRACT

Few techniques can assess phenotype and fate for the same cell simultaneously. Most of the current protocols used to characterize phenotype, although able to generate large datasets, necessitate the destruction of the cell of interest, making it impossible to assess its functional fate. Heterogeneous biological differentiating systems like hematopoiesis are therefore difficult to describe. Building on cell division tracking dyes, we further developed a protocol to simultaneously determine kinship, division number, and differentiation status for many single hematopoietic progenitors. This protocol allows the assessment of the ex vivo differentiation potential of murine and human hematopoietic progenitors, isolated from various biological sources. Moreover, as it is based on flow cytometry and a limited number of reagents, it can quickly generate a large amount of data, at the single-cell level, in a relatively inexpensive manner. We also provide the analytical pipeline for single-cell analysis, combined with a robust statistical framework. As this protocol allows the linking of cell division and differentiation at the single-cell level, it can be used to quantitatively assess symmetric and asymmetric fate commitment, the balance between self-renewal and differentiation, and the number of divisions for a given commitment fate. Altogether, this protocol can be used in experimental designs aiming to unravel the biological differences between hematopoietic progenitors, from a single-cell perspective.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells , Mice , Humans , Animals , Flow Cytometry/methods , Cell Differentiation , Cell Division , Phenotype
4.
Forensic Sci Int Genet ; 64: 102852, 2023 05.
Article in English | MEDLINE | ID: mdl-36934551

ABSTRACT

The consistency between DNA evidence and person(s) of interest (PoI) is summarized by a likelihood ratio (LR): the probability of the data given the PoI contributed divided by the probability given they did not. It is often the case that there are several PoI who may have individually or jointly contributed to the stain. If there is more than one PoI, or the number of contributors (NoC) cannot easily be determined, then several sets of hypotheses are needed, requiring significant resources to complete the interpretation. Recent technological developments in laboratory systems offer a way forward, by enabling production of single cell data. Though single-cell data may be procured by next generation sequencing or capillary electrophoresis workflows, in this work we focus our attention on assessing the consistency between PoIs and a collection of single cell electropherograms (scEPGs) from diploid cells - i.e., leukocytes and epithelial cells. Specifically, we introduce a framework that: I) clusters scEPGs into collections, each originating from one genetic source; II) for each PoI, determines a LR for each cluster of scEPGs; and III) by averaging the likelihood ratios for each PoI across all clusters provides a whole-sample weight of evidence summary. By using Model Based Clustering (MBC) in step I) and an algorithm, named EESCIt for Evidentiary Evaluation of Single Cells, that computes single-cell LRs in step II), we show that 99% of the comparisons rendered log LR values > 0 for true contributors, and of these all but one gave log LR > 5, regardless of the number of donors or whether the smallest contributor donated less than 20% of the cells, greatly expanding the collection of cases for which DNA forensics provides informative results.


Subject(s)
DNA Fingerprinting , Microsatellite Repeats , Humans , Likelihood Functions , DNA Fingerprinting/methods , Algorithms , DNA/genetics
5.
Immunity ; 55(10): 1843-1855.e6, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36108634

ABSTRACT

To optimize immunity to pathogens, B lymphocytes generate plasma cells with functionally diverse antibody isotypes. By lineage tracing single cells within differentiating B cell clones, we identified the heritability of discrete fate controlling mechanisms to inform a general mathematical model of B cell fate regulation. Founder cells highly influenced clonal plasma-cell fate, whereas class switch recombination (CSR) was variegated within clones. In turn, these CSR patterns resulted from independent all-or-none expression of both activation-induced cytidine deaminase (AID) and IgH germline transcription (GLT), with the latter being randomly re-expressed after each cell division. A stochastic model premised on these molecular transition rules accurately predicted antibody switching outcomes under varied conditions in vitro and during an immune response in vivo. Thus, the generation of functionally diverse antibody types follows rules of autonomous cellular programming that can be adapted and modeled for the rational control of antibody classes for potential therapeutic benefit.


Subject(s)
Immunoglobulin Class Switching , Recombination, Genetic , B-Lymphocytes , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Immunoglobulin Class Switching/genetics , Immunoglobulin Isotypes/genetics , Immunoglobulin Isotypes/metabolism
6.
Elife ; 112022 08 03.
Article in English | MEDLINE | ID: mdl-35920492

ABSTRACT

Mathematical models encoding biological hypotheses reveal new insight into the dynamics of naive immune cells in mice from birth to old age.


Subject(s)
Models, Theoretical , T-Lymphocytes , Animals , Mice , Models, Biological
8.
Nat Immunol ; 23(5): 791-801, 2022 05.
Article in English | MEDLINE | ID: mdl-35393592

ABSTRACT

Clonal expansion is a core aspect of T cell immunity. However, little is known with respect to the relationship between replicative history and the formation of distinct CD8+ memory T cell subgroups. To address this issue, we developed a genetic-tracing approach, termed the DivisionRecorder, that reports the extent of past proliferation of cell pools in vivo. Using this system to genetically 'record' the replicative history of different CD8+ T cell populations throughout a pathogen-specific immune response, we demonstrate that the central memory T (TCM) cell pool is marked by a higher number of prior divisions than the effector memory T cell pool, owing to the combination of strong proliferative activity during the acute immune response and selective proliferative activity after pathogen clearance. Furthermore, by combining DivisionRecorder analysis with single-cell transcriptomics and functional experiments, we show that replicative history identifies distinct cell pools within the TCM compartment. Specifically, we demonstrate that lowly divided TCM cells display enriched expression of stem-cell-associated genes, exist in a relatively quiescent state, and are superior in eliciting a proliferative recall response upon activation. These data provide the first evidence that a stem-cell-like memory T cell pool that reconstitutes the CD8+ T cell effector pool upon reinfection is marked by prior quiescence.


Subject(s)
CD8-Positive T-Lymphocytes , Immunologic Memory
10.
J Forensic Sci ; 67(2): 697-706, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34936089

ABSTRACT

Interpreting forensic DNA signal is arduous since the total intensity is a cacophony of signal from noise, artifact, and allele from an unknown number of contributors (NOC). An alternate to traditional bulk-processing pipelines is a single-cell one, where the sample is collected, and each cell is sequestered resulting in n single-source, single-cell EPGs (scEPG) that must be interpreted using applicable strategies. As with all forensic DNA interpretation strategies, high quality electropherograms are required; thus, to enhance the credibility of single-cell forensics, it is necessary to produce an efficient direct-to-PCR treatment that is compatible with prevailing downstream laboratory processes. We incorporated the semi-automated micro-fluidic DEPArray™ technology into the single-cell laboratory and optimized its implementation by testing the effects of four laboratory treatments on single-cell profiles. We focused on testing effects of phosphate buffer saline (PBS) since it is an important reagent that mitigates cell rupture but is also a PCR inhibitor. Specifically, we explored the effect of decreasing PBS concentrations on five electropherogram-quality metrics from 241 leukocytes: profile drop-out, allele drop-out, allele peak heights, peak height ratios, and scEPG sloping. In an effort to improve reagent use, we also assessed two concentrations of proteinase K. The results indicate that decreasing PBS concentrations to 0.5X or 0.25X improves scEPG quality, while modest modifications to proteinase K concentrations did not significantly impact it. We, therefore, conclude that a lower than recommended proteinase K concentration coupled with a lower than recommended PBS concentration results in enhanced scEPGs within the semi-automated single-cell pipeline.


Subject(s)
DNA Fingerprinting , DNA , Endopeptidase K , Alleles , DNA/analysis , DNA Fingerprinting/methods , Endopeptidase K/genetics , Forensic Genetics , Microsatellite Repeats , Polymerase Chain Reaction/methods
11.
Forensic Sci Int Genet ; 54: 102563, 2021 09.
Article in English | MEDLINE | ID: mdl-34284325

ABSTRACT

Forensic DNA signal is notoriously challenging to assess, requiring computational tools to support its interpretation. Over-expressions of stutter, allele drop-out, allele drop-in, degradation, differential degradation, and the like, make forensic DNA profiles too complicated to evaluate by manual methods. In response, computational tools that make point estimates on the Number of Contributors (NOC) to a sample have been developed, as have Bayesian methods that evaluate an A Posteriori Probability (APP) distribution on the NOC. In cases where an overly narrow NOC range is assumed, the downstream strength of evidence may be incomplete insofar as the evidence is evaluated with an inadequate set of propositions. In the current paper, we extend previous work on NOCIt, a Bayesian method that determines an APP on the NOC given an electropherogram, by reporting on an implementation where the user can add assumed contributors. NOCIt is a continuous system that incorporates models of peak height (including degradation and differential degradation), forward and reverse stutter, noise, and allelic drop-out, while being cognizant of allele frequencies in a reference population. When conditioned on a known contributor, we found that the mode of the APP distribution can shift to one greater when compared with the circumstance where no known contributor is assumed, and that occurred most often when the assumed contributor was the minor constituent to the mixture. In a development of a result of Slooten and Caliebe (FSI:G, 2018) that, under suitable assumptions, establishes the NOC can be treated as a nuisance variable in the computation of a likelihood ratio between the prosecution and defense hypotheses, we show that this computation must not only use coincident models, but also coincident contextual information. The results reported here, therefore, illustrate the power of modern probabilistic systems to assess full weights-of-evidence, and to provide information on reasonable NOC ranges across multiple contexts.


Subject(s)
DNA Fingerprinting , Alleles , Bayes Theorem , DNA , Humans
12.
Elife ; 102021 05 18.
Article in English | MEDLINE | ID: mdl-34002698

ABSTRACT

High-throughput single-cell methods have uncovered substantial heterogeneity in the pool of hematopoietic stem and progenitor cells (HSPCs), but how much instruction is inherited by offspring from their heterogeneous ancestors remains unanswered. Using a method that enables simultaneous determination of common ancestor, division number, and differentiation status of a large collection of single cells, our data revealed that murine cells that derived from a common ancestor had significant similarities in their division progression and differentiation outcomes. Although each family diversifies, the overall collection of cell types observed is composed of homogeneous families. Heterogeneity between families could be explained, in part, by differences in ancestral expression of cell surface markers. Our analyses demonstrate that fate decisions of cells are largely inherited from ancestor cells, indicating the importance of common ancestor effects. These results may have ramifications for bone marrow transplantation and leukemia, where substantial heterogeneity in HSPC behavior is observed.


Subject(s)
Cell Differentiation , Cell Proliferation , Hematopoietic Stem Cells/physiology , Animals , Bone Marrow , Bone Marrow Cells , Cells, Cultured , Hematopoietic Stem Cells/classification , Mice , Mice, Inbred C57BL
13.
Int J Legal Med ; 135(3): 727-738, 2021 May.
Article in English | MEDLINE | ID: mdl-33484330

ABSTRACT

Current analysis of forensic DNA stains relies on the probabilistic interpretation of bulk-processed samples that represent mixed profiles consisting of an unknown number of potentially partial representations of each contributor. Single-cell methods, in contrast, offer a solution to the forensic DNA mixture problem by incorporating a step that separates cells before extraction. A forensically relevant single-cell pipeline relies on efficient direct-to-PCR extractions that are compatible with standard downstream forensic reagents. Here we demonstrate the feasibility of implementing single-cell pipelines into the forensic process by exploring four metrics of electropherogram (EPG) signal quality-i.e., allele detection rates, peak heights, peak height ratios, and peak height balance across low- to high-molecular-weight short tandem repeat (STR) markers-obtained with four direct-to-PCR extraction treatments and a common post-PCR laboratory procedure. Each treatment was used to extract DNA from 102 single buccal cells, whereupon the amplification reagents were immediately added to the tube and the DNA was amplified/injected using post-PCR conditions known to elicit a limit of detection (LoD) of one DNA molecule. The results show that most cells, regardless of extraction treatment, rendered EPGs with at least a 50% true positive allele detection rate and that allele drop-out was not cell independent. Statistical tests demonstrated that extraction treatments significantly impacted all metrics of EPG quality, where the Arcturus® PicoPure™ extraction method resulted in the lowest median allele drop-out rate, highest median average peak height, highest median average peak height ratio, and least negative median values of EPG sloping for GlobalFiler™ STR loci amplified at half volume. We, therefore, conclude the feasibility of implementing single-cell pipelines for casework purposes and demonstrate that inferential systems assuming cell independence will not be appropriate in the probabilistic interpretation of a collection of single-cell EPGs.


Subject(s)
Alleles , DNA Fingerprinting/methods , DNA/analysis , DNA/isolation & purification , Polymerase Chain Reaction/methods , Single-Cell Analysis , Electrophoresis, Capillary , Humans , Limit of Detection , Microsatellite Repeats , Mouth Mucosa
14.
Front Bioinform ; 1: 723337, 2021.
Article in English | MEDLINE | ID: mdl-36303793

ABSTRACT

Lymphocytes are the central actors in adaptive immune responses. When challenged with antigen, a small number of B and T cells have a cognate receptor capable of recognising and responding to the insult. These cells proliferate, building an exponentially growing, differentiating clone army to fight off the threat, before ceasing to divide and dying over a period of weeks, leaving in their wake memory cells that are primed to rapidly respond to any repeated infection. Due to the non-linearity of lymphocyte population dynamics, mathematical models are needed to interrogate data from experimental studies. Due to lack of evidence to the contrary and appealing to arguments based on Occam's Razor, in these models newly born progeny are typically assumed to behave independently of their predecessors. Recent experimental studies, however, challenge that assumption, making clear that there is substantial inheritance of timed fate changes from each cell by its offspring, calling for a revision to the existing mathematical modelling paradigms used for information extraction. By assessing long-term live-cell imaging of stimulated murine B and T cells in vitro, we distilled the key phenomena of these within-family inheritances and used them to develop a new mathematical model, Cyton2, that encapsulates them. We establish the model's consistency with these newly observed fine-grained features. Two natural concerns for any model that includes familial correlations would be that it is overparameterised or computationally inefficient in data fitting, but neither is the case for Cyton2. We demonstrate Cyton2's utility by challenging it with high-throughput flow cytometry data, which confirms the robustness of its parameter estimation as well as its ability to extract biological meaning from complex mixed stimulation experiments. Cyton2, therefore, offers an alternate mathematical model, one that is, more aligned to experimental observation, for drawing inferences on lymphocyte population dynamics.

15.
Nat Cell Biol ; 22(12): 1399-1410, 2020 12.
Article in English | MEDLINE | ID: mdl-33230302

ABSTRACT

Severe infections are a major stress on haematopoiesis, where the consequences for haematopoietic stem cells (HSCs) have only recently started to emerge. HSC function critically depends on the integrity of complex bone marrow (BM) niches; however, what role the BM microenvironment plays in mediating the effects of infection on HSCs remains an open question. Here, using a murine model of malaria and combining single-cell RNA sequencing, mathematical modelling, transplantation assays and intravital microscopy, we show that haematopoiesis is reprogrammed upon infection, whereby the HSC compartment turns over substantially faster than at steady-state and HSC function is drastically affected. Interferon is found to affect both haematopoietic and mesenchymal BM cells and we specifically identify a dramatic loss of osteoblasts and alterations in endothelial cell function. Osteo-active parathyroid hormone treatment abolishes infection-triggered HSC proliferation and-coupled with reactive oxygen species quenching-enables partial rescuing of HSC function.


Subject(s)
Hematopoiesis/physiology , Hematopoietic Stem Cells/physiology , Malaria/physiopathology , Stem Cell Niche/physiology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Bone Marrow Cells/physiology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/physiology , Gene Expression Profiling/methods , Hematopoiesis/drug effects , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Malaria/parasitology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoblasts/physiology , Parathyroid Hormone/pharmacology , Plasmodium berghei/physiology , Reactive Oxygen Species/metabolism , Stem Cell Niche/genetics
16.
Forensic Sci Int Genet ; 47: 102296, 2020 07.
Article in English | MEDLINE | ID: mdl-32339916

ABSTRACT

Forensic DNA signal is notoriously challenging to interpret and requires the implementation of computational tools that support its interpretation. While data from high-copy, low-contributor samples result in electropherogram signal that is readily interpreted by probabilistic methods, electropherogram signal from forensic stains is often garnered from low-copy, high-contributor-number samples and is frequently obfuscated by allele sharing, allele drop-out, stutter and noise. Since forensic DNA profiles are too complicated to quantitatively assess by manual methods, continuous, probabilistic frameworks that draw inferences on the Number of Contributors (NOC) and compute the Likelihood Ratio (LR) given the prosecution's and defense's hypotheses have been developed. In the current paper, we validate a new version of the NOCIt inference platform that determines an A Posteriori Probability (APP) distribution of the number of contributors given an electropherogram. NOCIt is a continuous inference system that incorporates models of peak height (including degradation and differential degradation), forward and reverse stutter, noise and allelic drop-out while taking into account allele frequencies in a reference population. We established the algorithm's performance by conducting tests on samples that were representative of types often encountered in practice. In total, we tested NOCIt's performance on 815 degraded, UV-damaged, inhibited, differentially degraded, or uncompromised DNA mixture samples containing up to 5 contributors. We found that the model makes accurate, repeatable and reliable inferences about the NOCs and significantly outperformed methods that rely on signal filtering. By leveraging recent theoretical results of Slooten and Caliebe (FSI:G, 2018) that, under suitable assumptions, establish the NOC can be treated as a nuisance variable, we demonstrated that when NOCIt's APP is used in conjunction with a downstream likelihood ratio (LR) inference system that employs the same probabilistic model, a full evaluation across multiple contributor numbers is rendered. This work, therefore, illustrates the power of modern probabilistic systems to report holistic and interpretable weights-of-evidence to the trier-of-fact without assigning a specified number of contributors or filtering signal.


Subject(s)
DNA Fingerprinting , DNA/genetics , Likelihood Functions , Forensic Genetics/methods , Humans , Models, Statistical
17.
J Math Biol ; 79(2): 673-704, 2019 07.
Article in English | MEDLINE | ID: mdl-31069504

ABSTRACT

Motivated by a recently proposed design for a DNA coded randomised algorithm that enables inference of the average generation of a collection of cells descendent from a common progenitor, here we establish strong convergence properties for the average generation of a super-critical Bellman-Harris process. We further extend those results to a two-type Bellman-Harris process where one type can give rise to the other, but not vice versa. These results further affirm the estimation method's potential utility by establishing its long run accuracy on individual sample-paths, and significantly expanding its remit to encompass cellular development that gives rise to differentiated offspring with distinct population dynamics.


Subject(s)
Cell Differentiation/genetics , DNA Replication , Models, Genetic , Algorithms , Cell Culture Techniques , Cell Death/genetics , Cell Proliferation/genetics , Computer Simulation , Intravital Microscopy , Telomere Homeostasis/genetics , Time-Lapse Imaging
18.
PLoS One ; 13(11): e0207599, 2018.
Article in English | MEDLINE | ID: mdl-30458020

ABSTRACT

Continuous mixture interpretation methods that employ probabilistic genotyping to compute the Likelihood Ratio (LR) utilize more information than threshold-based systems. The continuous interpretation schemes described in the literature, however, do not all use the same underlying probabilistic model and standards outlining which probabilistic models may or may not be implemented into casework do not exist; thus, it is the individual forensic laboratory or expert that decides which model and corresponding software program to implement. For countries, such as the United States, with an adversarial legal system, one can envision a scenario where two probabilistic models are used to present the weight of evidence, and two LRs are presented by two experts. Conversely, if no independent review of the evidence is requested, one expert using one model may present one LR as there is no standard or guideline requiring the uncertainty in the LR estimate be presented. The choice of model determines the underlying probability calculation, and changes to it can result in non-negligible differences in the reported LR or corresponding verbal categorization presented to the trier-of-fact. In this paper, we study the impact of model differences on the LR and on the corresponding verbal expression computed using four variants of a continuous mixture interpretation method. The four models were tested five times each on 101, 1-, 2- and 3-person experimental samples with known contributors. For each sample, LRs were computed using the known contributor as the person of interest. In all four models, intra-model variability increased with an increase in the number of contributors and with a decrease in the contributor's template mass. Inter-model variability in the associated verbal expression of the LR was observed in 32 of the 195 LRs used for comparison. Moreover, in 11 of these profiles there was a change from LR > 1 to LR < 1. These results indicate that modifications to existing continuous models do have the potential to significantly impact the final statistic, justifying the continuation of broad-based, large-scale, independent studies to quantify the limits of reliability and variability of existing forensically relevant systems.


Subject(s)
DNA Fingerprinting/methods , Forensic Genetics/methods , Algorithms , Humans , Likelihood Functions , Models, Statistical , Software , United States
19.
Front Immunol ; 9: 2053, 2018.
Article in English | MEDLINE | ID: mdl-30250473

ABSTRACT

In response to external stimuli, naïve B cells proliferate and take on a range of fates important for immunity. How their fate is determined is a topic of much recent research, with candidates including asymmetric cell division, lineage priming, stochastic assignment, and microenvironment instruction. Here we manipulate the generation of plasmablasts from B lymphocytes in vitro by varying CD40 stimulation strength to determine its influence on potential sources of fate control. Using long-term live cell imaging, we directly measure times to differentiate, divide, and die of hundreds of pairs of sibling cells. These data reveal that while the allocation of fates is significantly altered by signal strength, the proportion of siblings identified with asymmetric fates is unchanged. In contrast, we find that plasmablast generation is enhanced by slowing times to divide, which is consistent with a hypothesis of competing timed stochastic fate outcomes. We conclude that this mechanistically simple source of alternative fate regulation is important, and that useful quantitative models of signal integration can be developed based on its principles.


Subject(s)
B-Lymphocytes/physiology , Plasma Cells/physiology , Precursor Cells, B-Lymphoid/physiology , Animals , Biological Clocks , CD40 Antigens/metabolism , Cell Differentiation , Cell Division , Cell Lineage , Cells, Cultured , Female , Immunization , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Positive Regulatory Domain I-Binding Factor 1/genetics , Stochastic Processes
20.
J Immunol ; 201(3): 1097-1103, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29914887

ABSTRACT

The generation of cellular heterogeneity is an essential feature of immune responses. Understanding the heritability and asymmetry of phenotypic changes throughout this process requires determination of clonal-level contributions to fate selection. Evaluating intraclonal and interclonal heterogeneity and the influence of distinct fate determinants in large numbers of cell lineages, however, is usually laborious, requiring familial tracing and fate mapping. In this study, we introduce a novel, accessible, high-throughput method for measuring familial fate changes with accompanying statistical tools for testing hypotheses. The method combines multiplexing of division tracking dyes with detection of phenotypic markers to reveal clonal lineage properties. We illustrate the method by studying in vitro-activated mouse CD8+ T cell cultures, reporting division and phenotypic changes at the level of families. This approach has broad utility as it is flexible and adaptable to many cell types and to modifications of in vitro, and potentially in vivo, fate monitoring systems.


Subject(s)
Cell Division/physiology , Cell Lineage/physiology , Coloring Agents/metabolism , Animals , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/physiology , Cell Proliferation/physiology , Cell Tracking/methods , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...