Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 82: 324-40, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24927053

ABSTRACT

In this work, a new class of highly potent antituberculosis agents, 1-substituted-5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazoles and their oxa and selanyl analogs, is described. The minimal inhibitory concentration (MIC) values reached 1 µM (0.36-0.44 µg/mL) against Mycobacterium tuberculosis CNCTC My 331/88 and 0.25-1 µM against six multidrug-resistant clinically isolated strains of M. tuberculosis. The antimycobacterial effects of these compounds were highly specific because they were ineffective against all eight bacterial strains and eight fungal strains studied. Furthermore, these compounds exhibited low in vitro toxicity in four mammalian cell lines (IC50 > 30 µM). We also examined the structure-activity relationships of the compounds, particularly the effects on antimycobacterial activity of the number and position of the nitro groups, the linker between tetrazole and benzyl moieties, and the tetrazole itself. Relatively high variability of substituent R(1) on the tetrazole in the absence of negative effects on antimycobacterial activity allows further structural optimization with respect to toxicity and the ADME properties of the 1-substituted-5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazoles lead compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Antitubercular Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Mycobacterium tuberculosis/drug effects , Nitrobenzenes/pharmacology , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Hep G2 Cells , Humans , Microbial Sensitivity Tests , Molecular Structure , Nitrobenzenes/chemical synthesis , Nitrobenzenes/chemistry , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...