Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Mol Metab ; 83: 101925, 2024 May.
Article in English | MEDLINE | ID: mdl-38537884

ABSTRACT

OBJECTIVES: Estrogen-related-receptor α (ERRα) plays a critical role in the transcriptional regulation of cellular bioenergetics and metabolism, and perturbations in its activity have been associated with metabolic diseases. While several coactivators and corepressors of ERRα have been identified to date, a knowledge gap remains in understanding the extent to which ERRα cooperates with coregulators in the control of gene expression. Herein, we mapped the primary chromatin-bound ERRα interactome in mouse liver. METHODS: RIME (Rapid Immuno-precipitation Mass spectrometry of Endogenous proteins) analysis using mouse liver samples from two circadian time points was used to catalog ERRα-interacting proteins on chromatin. The genomic crosstalk between ERRα and its identified cofactors in the transcriptional control of precise gene programs was explored through cross-examination of genome-wide binding profiles from chromatin immunoprecipitation-sequencing (ChIP-seq) studies. The dynamic interplay between ERRα and its newly uncovered cofactor Host cell factor C1 (HCFC1) was further investigated by loss-of-function studies in hepatocytes. RESULTS: Characterization of the hepatic ERRα chromatin interactome led to the identification of 48 transcriptional interactors of which 42 were previously unknown including HCFC1. Interrogation of available ChIP-seq binding profiles highlighted oxidative phosphorylation (OXPHOS) under the control of a complex regulatory network between ERRα and multiple cofactors. While ERRα and HCFC1 were found to bind to a large set of common genes, only a small fraction showed their colocalization, found predominately near the transcriptional start sites of genes particularly enriched for components of the mitochondrial respiratory chain. Knockdown studies demonstrated inverse regulatory actions of ERRα and HCFC1 on OXPHOS gene expression ultimately dictating the impact of their loss-of-function on mitochondrial respiration. CONCLUSIONS: Our work unveils a repertoire of previously unknown transcriptional partners of ERRα comprised of chromatin modifiers and transcription factors thus advancing our knowledge of how ERRα regulates metabolic transcriptional programs.


Subject(s)
Chromatin , ERRalpha Estrogen-Related Receptor , Liver , Receptors, Estrogen , Animals , Mice , Chromatin/metabolism , Chromatin/genetics , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Liver/metabolism , Male , Mice, Inbred C57BL , Gene Expression Regulation , Hepatocytes/metabolism
2.
Mol Cancer Res ; 22(2): 113-124, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37889103

ABSTRACT

mTOR is a serine/threonine kinase that controls prostate cancer cell growth in part by regulating gene programs associated with metabolic and cell proliferation pathways. mTOR-mediated control of gene expression can be achieved via phosphorylation of transcription factors, leading to changes in their cellular localization and activities. mTOR also directly associates with chromatin in complex with transcriptional regulators, including the androgen receptor (AR). Nuclear mTOR (nmTOR) has been previously shown to act as a transcriptional integrator of the androgen signaling pathway in association with the chromatin remodeling machinery, AR, and FOXA1. However, the contribution of cytoplasmic mTOR (cmTOR) and nmTOR and the role played by FOXA1 in this process remains to be explored. Herein, we engineered cells expressing mTOR tagged with nuclear localization and export signals dictating mTOR localization. Transcriptome profiling in AR-positive prostate cancer cells revealed that nmTOR generally downregulates a subset of the androgen response pathway independently of its kinase activity, while cmTOR upregulates a cell cycle-related gene signature in a kinase-dependent manner. Biochemical and genome-wide transcriptomic analyses demonstrate that nmTOR functionally interacts with AR and FOXA1. Ablation of FOXA1 reprograms the nmTOR cistrome and transcriptome of androgen responsive prostate cancer cells. This works highlights a transcriptional regulatory pathway in which direct interactions between nmTOR, AR and FOXA1 dictate a combinatorial role for these factors in the control of specific gene programs in prostate cancer cells. IMPLICATIONS: The finding that canonical and nuclear mTOR signaling pathways control distinct gene programs opens therapeutic opportunities to modulate mTOR activity in prostate cancer cells.


Subject(s)
Androgens , Prostatic Neoplasms , Humans , Male , Androgens/metabolism , Cell Line, Tumor , Chromatin , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
3.
Cell Rep ; 43(1): 113615, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38159280

ABSTRACT

The integrated stress response (ISR) is critical for cell survival under stress. In response to diverse environmental cues, eIF2α becomes phosphorylated, engendering a dramatic change in mRNA translation. The activation of ISR plays a pivotal role in the early embryogenesis, but the eIF2-dependent translational landscape in pluripotent embryonic stem cells (ESCs) is largely unexplored. We employ a multi-omics approach consisting of ribosome profiling, proteomics, and metabolomics in wild-type (eIF2α+/+) and phosphorylation-deficient mutant eIF2α (eIF2αA/A) mouse ESCs (mESCs) to investigate phosphorylated (p)-eIF2α-dependent translational control of naive pluripotency. We show a transient increase in p-eIF2α in the naive epiblast layer of E4.5 embryos. Absence of eIF2α phosphorylation engenders an exit from naive pluripotency following 2i (two chemical inhibitors of MEK1/2 and GSK3α/ß) withdrawal. p-eIF2α controls translation of mRNAs encoding proteins that govern pluripotency, chromatin organization, and glutathione synthesis. Thus, p-eIF2α acts as a key regulator of the naive pluripotency gene regulatory network.


Subject(s)
Mouse Embryonic Stem Cells , Pluripotent Stem Cells , Animals , Mice , Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/metabolism , Phosphorylation , Pluripotent Stem Cells/metabolism , RNA, Messenger/metabolism , Eukaryotic Initiation Factor-2/metabolism
4.
Nat Commun ; 14(1): 6982, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914694

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is epidemiologically associated with obesity and diabetes and can lead to liver cirrhosis and hepatocellular carcinoma if left untreated. The intricate signaling pathways that orchestrate hepatocyte energy metabolism and cellular stress, intrahepatic cell crosstalk, as well as interplay between peripheral tissues remain elusive and are crucial for the development of anti-NASH therapies. Herein, we reveal E3 ligase FBXW7 as a key factor regulating hepatic catabolism, stress responses, systemic energy homeostasis, and NASH pathogenesis with attenuated FBXW7 expression as a feature of advanced NASH. Multiomics and pharmacological intervention showed that FBXW7 loss-of-function in hepatocytes disrupts a metabolic transcriptional axis conjointly controlled by the nutrient-sensing nuclear receptors ERRα and PPARα, resulting in suppression of fatty acid oxidation, elevated ER stress, apoptosis, immune infiltration, fibrogenesis, and ultimately NASH progression in male mice. These results provide the foundation for developing alternative strategies co-targeting ERRα and PPARα for the treatment of NASH.


Subject(s)
Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Male , Mice , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Hepatocytes/metabolism , Homeostasis , Liver/metabolism , Liver Neoplasms/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Nutrients , PPAR alpha/genetics , PPAR alpha/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism
5.
Mol Metab ; 78: 101814, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37802398

ABSTRACT

OBJECTIVE: Estrogen related receptor α (ERRα) occupies a central node in the transcriptional control of energy metabolism, including in skeletal muscle, but whether modulation of its activity can directly contribute to extend endurance to exercise remains to be investigated. The goal of this study was to characterize the benefit of mice engineered to express a physiologically relevant activated form of ERRα on skeletal muscle exercise metabolism and performance. METHODS: We recently shown that mutational inactivation of three regulated phosphosites in the amino terminal domain of the nuclear receptor ERRα impedes its degradation, leading to an accumulation of ERRα proteins and perturbation of metabolic homeostasis in ERRα3SA mutant mice. Herein, we used a multi-omics approach in combination with physical endurance tests to ascertain the consequences of expressing the constitutively active phospho-deficient ERRα3SA form on muscle exercise performance and energy metabolism. RESULTS: Genetic heightening of ERRα activity enhanced exercise capacity, fatigue-resistance, and endurance. This phenotype resulted from extensive reprogramming of ERRα global DNA occupancy and transcriptome in muscle leading to an increase in oxidative fibers, mitochondrial biogenesis, fatty acid oxidation, and lactate homeostasis. CONCLUSION: Our findings support the potential to enhance physical performance and exercise-induced health benefits by targeting molecular pathways regulating ERRα transcriptional activity.


Subject(s)
Muscle, Skeletal , Running , Mice , Animals , Muscle, Skeletal/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Gene Expression Regulation , ERRalpha Estrogen-Related Receptor
6.
Mol Cancer Res ; 21(10): 1050-1063, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37409967

ABSTRACT

Dysregulation of mTOR signaling plays a critical role in promoting prostate cancer growth. HOXB13, a homeodomain transcription factor, is known to influence the androgen response and prostate cancer development. Recently, HOXB13 was found to complex with mTOR on chromatin. However, the functional crosstalk between HOXB13 and mTOR remains elusive. We now report that mTOR directly interacts with and hierarchically phosphorylates HOXB13 at threonine 8 and 41 then serine 31 to promote its interaction with the E3 ligase SKP2 while enhancing its oncogenic properties. Expression of HOXB13 harboring phosphomimetic mutations at the mTOR-targeted sites stimulates prostate cancer cellular growth both in vitro and in murine xenografts. Transcriptional profiling studies revealed a phospho-HOXB13-dependent gene signature capable of robustly discriminating between normal prostate tissues, primary and metastatic prostate cancer samples. This work uncovers a previously unanticipated molecular cascade by which mTOR directly phosphorylates HOXB13 to dictate a specific gene program with oncogenic implications in prostate cancer. IMPLICATIONS: Control of HOXB13 transcriptional activity via its direct phosphorylation by the mTOR kinase is a potential therapeutic avenue for the management of advanced prostate cancer.


Subject(s)
Homeodomain Proteins , Prostatic Neoplasms , Male , Humans , Animals , Mice , Phosphorylation , Cell Line, Tumor , Cell Proliferation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Prostatic Neoplasms/pathology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
7.
Health Rep ; 33(12): 37-54, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36542362

ABSTRACT

Introduction: This study's objective was to examine sociodemographic disparities in COVID-19 vaccine uptake and vaccination intent in the Canadian provinces by identifying factors associated with vaccine uptake in seniors prioritized for vaccination at the time of the survey and vaccination intent in all adults. Data and methods: A cross-sectional survey of Canadian adults was conducted in all provinces from mid-April to mid-May 2021. In addition to sociodemographic characteristics, respondents (n=10,678) provided information on their COVID-19 vaccination status or their intent to get vaccinated. Logistic regression models were fitted using sociodemographic factors as explanatory variables and vaccination status (unvaccinated vs at least one dose) or vaccination intent (unlikely versus likely or already vaccinated) as outcomes. To account for vaccine prioritization groups, multiple regression models were adjusted for province of residence, age, Indigenous identity and health care worker status. Results: Seniors with a lower household income (less than $60,000) and those living in smaller communities (fewer than 100,000 inhabitants) had higher odds of being unvaccinated. Among Canadian adults, the odds of being unlikely to get vaccinated were higher for males (adjusted odds ratio [AOR] 1.3), individuals younger than 60 (AOR between 3.3 and 5.1), non-health care workers (AOR 3.3), those with less than a high school education (AOR 3.4) or a household income of less than $30,000 (AOR 2.7) and individuals who do not identify as South Asian, Chinese, Black, Filipino, Arab, Latin American, Southeast Asian, West Asian, Korean or Japanese (AOR 1.7). Interpretation: COVID-19 vaccine uptake (80%) and vaccination intent (95%) were high among Canadians; however, relative disparities were observed among specific groups. Continued efforts targeted toward these groups are essential in reducing potential inequity in access or service provision.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Male , Humans , Canada/epidemiology , Cross-Sectional Studies , COVID-19/prevention & control , Vaccination
8.
Commun Biol ; 5(1): 955, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36097051

ABSTRACT

Functional oncogenic links between ErbB2 and ERRα in HER2+ breast cancer patients support a therapeutic benefit of co-targeted therapies. However, ErbB2 and ERRα also play key roles in heart physiology, and this approach could pose a potential liability to cardiovascular health. Herein, using integrated phosphoproteomic, transcriptomic and metabolic profiling, we uncovered molecular mechanisms associated with the adverse remodeling of cardiac functions in mice with combined attenuation of ErbB2 and ERRα activity. Genetic disruption of both effectors results in profound effects on cardiomyocyte architecture, inflammatory response and metabolism, the latter leading to a decrease in fatty acyl-carnitine species further increasing the reliance on glucose as a metabolic fuel, a hallmark of failing hearts. Furthermore, integrated omics signatures of ERRα loss-of-function and doxorubicin treatment exhibit common features of chemotherapeutic cardiotoxicity. These findings thus reveal potential cardiovascular risks in discrete combination therapies in the treatment of breast and other cancers.


Subject(s)
Receptors, Estrogen , Ventricular Remodeling , Animals , Doxorubicin/pharmacology , Mice , Myocytes, Cardiac/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , ERRalpha Estrogen-Related Receptor
9.
Proc Natl Acad Sci U S A ; 119(35): e2121251119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994670

ABSTRACT

GCN2 (general control nonderepressible 2) is a serine/threonine-protein kinase that controls messenger RNA translation in response to amino acid availability and ribosome stalling. Here, we show that GCN2 controls erythrocyte clearance and iron recycling during stress. Our data highlight the importance of liver macrophages as the primary cell type mediating these effects. During different stress conditions, such as hemolysis, amino acid deficiency or hypoxia, GCN2 knockout (GCN2-/-) mice displayed resistance to anemia compared with wild-type (GCN2+/+) mice. GCN2-/- liver macrophages exhibited defective erythrophagocytosis and lysosome maturation. Molecular analysis of GCN2-/- cells demonstrated that the ATF4-NRF2 pathway is a critical downstream mediator of GCN2 in regulating red blood cell clearance and iron recycling.


Subject(s)
Amino Acids , Erythrocytes , Iron , Liver , Macrophages , Protein Serine-Threonine Kinases , Activating Transcription Factor 4/metabolism , Amino Acids/deficiency , Amino Acids/metabolism , Anemia/metabolism , Animals , Cytophagocytosis , Erythrocytes/metabolism , Gene Deletion , Hemolysis , Hypoxia/metabolism , Iron/metabolism , Liver/cytology , Lysosomes/metabolism , Macrophages/metabolism , Mice , Mice, Knockout , NF-E2-Related Factor 2/metabolism , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Stress, Physiological
10.
J Biol Chem ; 298(9): 102277, 2022 09.
Article in English | MEDLINE | ID: mdl-35863436

ABSTRACT

La-related protein 1 (LARP1) has been identified as a key translational inhibitor of terminal oligopyrimidine (TOP) mRNAs downstream of the nutrient sensing protein kinase complex, mTORC1. LARP1 exerts this inhibitory effect on TOP mRNA translation by binding to the mRNA cap and the adjacent 5'TOP motif, resulting in the displacement of the cap-binding protein eIF4E from TOP mRNAs. However, the involvement of additional signaling pathway in regulating LARP1-mediated inhibition of TOP mRNA translation is largely unexplored. In the present study, we identify a second nutrient sensing kinase GCN2 that converges on LARP1 to control TOP mRNA translation. Using chromatin-immunoprecipitation followed by massive parallel sequencing (ChIP-seq) analysis of activating transcription factor 4 (ATF4), an effector of GCN2 in nutrient stress conditions, in WT and GCN2 KO mouse embryonic fibroblasts, we determined that LARP1 is a GCN2-dependent transcriptional target of ATF4. Moreover, we identified GCN1, a GCN2 activator, participates in a complex with LARP1 on stalled ribosomes, suggesting a role for GCN1 in LARP1-mediated translation inhibition in response to ribosome stalling. Therefore, our data suggest that the GCN2 pathway controls LARP1 activity via two mechanisms: ATF4-dependent transcriptional induction of LARP1 mRNA and GCN1-mediated recruitment of LARP1 to stalled ribosomes.


Subject(s)
Amino Acids , Protein Biosynthesis , Protein Serine-Threonine Kinases , RNA 5' Terminal Oligopyrimidine Sequence , RNA, Messenger , RNA-Binding Proteins , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Amino Acids/metabolism , Animals , Cell Culture Techniques , Chromatin Immunoprecipitation , Eukaryotic Initiation Factor-4E/metabolism , Fibroblasts , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
11.
STAR Protoc ; 3(2): 101434, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35693211

ABSTRACT

Rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) is a technique to study protein complexes on chromatin. The protocol below describes specific steps for RIME analysis of the male human-derived prostate cancer cell line LNCaP. This approach can also be applied to other prostate cancer cell lines such as 22Rv1, DU145, and PC3. For other cell types, we recommend optimizing the number of cell culture plates to ensure adequate sample for mass spectrometry protein detection. For complete details on the use and execution of this protocol, please refer to Mohammed et al. (2016) and Dufour et al. (2022).


Subject(s)
Chromatin , Prostatic Neoplasms , Humans , Immunoprecipitation , Male , Mass Spectrometry/methods , Prostate/metabolism , Prostatic Neoplasms/metabolism
12.
Nat Commun ; 13(1): 2105, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440636

ABSTRACT

Insulin resistance, a harbinger of the metabolic syndrome, is a state of compromised hormonal response resulting from the dysregulation of a wide range of insulin-controlled cellular processes. However, how insulin affects cellular energy metabolism via long-term transcriptional regulation and whether boosting mitochondrial function alleviates insulin resistance remains to be elucidated. Herein we reveal that insulin directly enhances the activity of the nuclear receptor ERRα via a GSK3ß/FBXW7 signaling axis. Liver-specific deletion of GSK3ß or FBXW7 and mice harboring mutations of ERRα phosphosites (ERRα3SA) co-targeted by GSK3ß/FBXW7 result in accumulated ERRα proteins that no longer respond to fluctuating insulin levels. ERRα3SA mice display reprogrammed liver and muscle transcriptomes, resulting in compromised energy homeostasis and reduced insulin sensitivity despite improved mitochondrial function. This crossroad of insulin signaling and transcriptional control by a nuclear receptor offers a framework to better understand the complex cellular processes contributing to the development of insulin resistance.


Subject(s)
Insulin Resistance , Animals , F-Box-WD Repeat-Containing Protein 7/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Insulin/metabolism , Insulin Resistance/genetics , Mice , Receptors, Estrogen/metabolism , ERRalpha Estrogen-Related Receptor
13.
Cell Rep ; 38(12): 110534, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35320709

ABSTRACT

A growing number of studies support a direct role for nuclear mTOR in gene regulation and chromatin structure. Still, the scarcity of known chromatin-bound mTOR partners limits our understanding of how nuclear mTOR controls transcription. Herein, comprehensive mapping of the mTOR chromatin-bound interactome in both androgen-dependent and -independent cellular models of prostate cancer (PCa) identifies a conserved 67-protein interaction network enriched for chromatin modifiers, transcription factors, and SUMOylation machinery. SUMO2/3 and nuclear pore protein NUP210 are among the strongest interactors, while the androgen receptor (AR) is the dominant androgen-inducible mTOR partner. Further investigation reveals that NUP210 facilitates mTOR nuclear trafficking, that mTOR and AR form a functional transcriptional module with the nucleosome remodeling and deacetylase (NuRD) complex, and that androgens specify mTOR-SUMO2/3 promoter-enhancer association. This work identifies a vast network of mTOR-associated nuclear complexes advocating innovative molecular strategies to modulate mTOR-dependent gene regulation with conceivable implications for PCa and other diseases.


Subject(s)
Chromatin , Prostatic Neoplasms , Androgens/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , TOR Serine-Threonine Kinases/metabolism
14.
Sci Rep ; 11(1): 21268, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711912

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most frequent liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), which is characterized by triglyceride accumulation, inflammation, and fibrosis. No pharmacological agents are currently approved to treat these conditions, but it is clear now that modulation of lipid synthesis and autophagy are key biological mechanisms that could help reduce or prevent these liver diseases. The folliculin (FLCN) protein has been recently identified as a central regulatory node governing whole body energy homeostasis, and we hypothesized that FLCN regulates highly metabolic tissues like the liver. We thus generated a liver specific Flcn knockout mouse model to study its role in liver disease progression. Using the methionine- and choline-deficient diet to mimic liver fibrosis, we demonstrate that loss of Flcn reduced triglyceride accumulation, fibrosis, and inflammation in mice. In this aggressive liver disease setting, loss of Flcn led to activation of transcription factors TFEB and TFE3 to promote autophagy, promoting the degradation of intracellular lipid stores, ultimately resulting in reduced hepatocellular damage and inflammation. Hence, the activity of FLCN could be a promising target for small molecule drugs to treat liver fibrosis by specifically activating autophagy. Collectively, these results show an unexpected role for Flcn in fatty liver disease progression and highlight new potential treatment strategies.


Subject(s)
Autophagy/genetics , Hepatitis/etiology , Hepatitis/metabolism , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Proto-Oncogene Proteins/deficiency , Signal Transduction , Tumor Suppressor Proteins/deficiency , Animals , Biomarkers , Biopsy , Computational Biology , Diet, High-Fat , Disease Models, Animal , Disease Susceptibility , Gene Expression Profiling , Genetic Predisposition to Disease , Hepatitis/pathology , Immunohistochemistry , Liver Cirrhosis/pathology , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Transcriptome
15.
Sci Rep ; 11(1): 15073, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34302001

ABSTRACT

The estrogen-related receptor alpha (ERRα) is a primary regulator of mitochondrial energy metabolism, function and dynamics, and has been implicated in autophagy and immune regulation. ERRα is abundantly expressed in the intestine and in cells of the immune system. However, its role in inflammatory bowel disease (IBD) remains unknown. Here, we report a protective role of ERRα in the intestine. We found that mice deficient in ERRα were susceptible to experimental colitis, exhibiting increased colon inflammation and tissue damage. This phenotype was mediated by impaired compensatory proliferation of intestinal epithelial cells (IEC) following injury, enhanced IEC apoptosis and necrosis and reduced mucus-producing goblet cell counts. Longitudinal analysis of the microbiota demonstrated that loss of ERRα lead to a reduction in microbiome α-diversity and depletion of healthy gut bacterial constituents. Mechanistically, ERRα mediated its protective effects by acting within the radio-resistant compartment of the intestine. It promoted disease tolerance through transcriptional control of key genes involved in intestinal tissue homeostasis and repair. These findings provide new insights on the role of ERRα in the gut and extends our current knowledge of nuclear receptors implicated in IBD.


Subject(s)
Colitis/genetics , Energy Metabolism/genetics , Inflammatory Bowel Diseases/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Receptors, Estrogen/genetics , Animals , Apoptosis/genetics , Cell Proliferation/genetics , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Colon/metabolism , Colon/pathology , Dextran Sulfate/toxicity , Disease Models, Animal , Homeostasis/genetics , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/pathology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Microbiota/genetics , Necrosis/genetics , Necrosis/metabolism , Necrosis/pathology , ERRalpha Estrogen-Related Receptor
16.
Brain Behav Immun Health ; 12: 100203, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33462567

ABSTRACT

BACKGROUND: Guillain Barre Syndrome (GBS) and Miller Fisher Syndrome (MFS) are emerging as known consequences of COVID-19 infection. However, there have been no reported cases with positive GM1 or GQ1b antibodies in the literature to date. Although clinically similar, the pathophysiology of COVID-19 related GBS and MFS may be significantly different from cases in the pre-pandemic era. CASE PRESENTATION: We present a patient with ascending areflexic weakness consistent with GBS with positive GM1 antibody. The patient had recovered from COVID-19 infection two weeks prior with mild viral illness and symptoms. Her weakness was isolated to the lower extremities and improved after intravenous immunoglobulin treatment. Patient recovered eventually. CONCLUSIONS: - The general lack of reported ganglioside antibodies supports a novel target(s) for molecular mimicry as the underlying etiology, which raises the concern for possible vaccine induced complication. Whether the current GM1 positive case is a sequalae of COVID-19 or a mere coincidence is inconclusive. Further understanding of the disease mechanism of pandemic era GBS and MFS, including antigen target(s) of COVID-19, may be of utmost importance to the development of a safe COVID-19 vaccine.

17.
Oncogene ; 39(41): 6406-6420, 2020 10.
Article in English | MEDLINE | ID: mdl-32855526

ABSTRACT

DNA methylation is implicated in the acquisition of malignant phenotypes, and the use of epigenetic modulating drugs is a promising anti-cancer therapeutic strategy. 5-aza-2'deoxycytidine (decitabine, 5-azadC) is an FDA-approved DNA methyltransferase (DNMT) inhibitor with proven effectiveness against hematological malignancies and more recently triple-negative breast cancer (BC). Herein, genetic or pharmacological studies uncovered a hitherto unknown feedforward molecular link between DNMT1 and the estrogen related receptor α (ERRα), a key transcriptional regulator of cellular metabolism. Mechanistically, DNMT1 promotes ERRα stability which in turn couples DNMT1 transcription with that of the methionine cycle and S-adenosylmethionine synthesis to drive DNA methylation. In vitro and in vivo investigation using a pre-clinical mouse model of BC demonstrated a clear therapeutic advantage for combined administration of the ERRα inhibitor C29 with 5-azadC. A large-scale bisulfite genomic sequencing analysis revealed specific methylation perturbations fostering the discovery that reversal of promoter hypermethylation and consequently derepression of the tumor suppressor gene, IRF4, is a factor underlying the observed BC suppressive effects. This work thus uncovers a critical role of ERRα in the crosstalk between transcriptional control of metabolism and epigenetics and illustrates the potential for targeting ERRα in combination with DNMT inhibitors for BC treatment and other epigenetics-driven malignancies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/genetics , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Interferon Regulatory Factors/genetics , Receptors, Estrogen/metabolism , Animals , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , CpG Islands/genetics , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation/drug effects , Decitabine/pharmacology , Decitabine/therapeutic use , Epigenesis, Genetic/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Promoter Regions, Genetic/genetics , Protein Stability , Receptors, Estrogen/antagonists & inhibitors , S-Adenosylmethionine/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription, Genetic/drug effects , Xenograft Model Antitumor Assays , ERRalpha Estrogen-Related Receptor
18.
Genes Dev ; 34(7-8): 544-559, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32079653

ABSTRACT

Excessive reactive oxygen species (ROS) can cause oxidative stress and consequently cell injury contributing to a wide range of diseases. Addressing the critical gaps in our understanding of the adaptive molecular events downstream ROS provocation holds promise for the identification of druggable metabolic vulnerabilities. Here, we unveil a direct molecular link between the activity of two estrogen-related receptor (ERR) isoforms and the control of glutamine utilization and glutathione antioxidant production. ERRα down-regulation restricts glutamine entry into the TCA cycle, while ERRγ up-regulation promotes glutamine-driven glutathione production. Notably, we identify increased ERRγ expression/activation as a hallmark of oxidative stress triggered by mitochondrial disruption or chemotherapy. Enhanced tumor antioxidant capacity is an underlying feature of human breast cancer (BCa) patients that respond poorly to treatment. We demonstrate that pharmacological inhibition of ERRγ with the selective inverse agonist GSK5182 increases antitumor efficacy of the chemotherapeutic paclitaxel on poor outcome BCa tumor organoids. Our findings thus underscore the ERRs as novel redox sensors and effectors of a ROS defense program and highlight the potential therapeutic advantage of exploiting ERRγ inhibitors for the treatment of BCa and other diseases where oxidative stress plays a central role.


Subject(s)
Breast Neoplasms/physiopathology , Drug Resistance, Neoplasm/drug effects , Oxidative Stress , Reactive Oxygen Species/metabolism , Receptors, Estrogen/metabolism , Signal Transduction/physiology , Animals , Antineoplastic Agents/pharmacology , Biosensing Techniques , Breast Neoplasms/drug therapy , Female , Gene Expression Regulation, Neoplastic/drug effects , Glutamine/metabolism , Glutathione/metabolism , Humans , Mice , Oxidative Stress/drug effects , Oxidative Stress/physiology , Paclitaxel/pharmacology , Receptors, Estrogen/genetics , Rotenone/pharmacology , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology , ERRalpha Estrogen-Related Receptor
19.
Nat Commun ; 10(1): 2901, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31263101

ABSTRACT

Dysregulation of histone modifications promotes carcinogenesis by altering transcription. Breast cancers frequently overexpress the histone methyltransferase EZH2, the catalytic subunit of Polycomb Repressor Complex 2 (PRC2). However, the role of EZH2 in this setting is unclear due to the context-dependent functions of PRC2 and the heterogeneity of breast cancer. Moreover, the mechanisms underlying PRC2 overexpression in cancer are obscure. Here, using multiple models of breast cancer driven by the oncogene ErbB2, we show that the tyrosine kinase c-Src links energy sufficiency with PRC2 overexpression via control of mRNA translation. By stimulating mitochondrial ATP production, c-Src suppresses energy stress, permitting sustained activation of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which increases the translation of mRNAs encoding the PRC2 subunits Ezh2 and Suz12. We show that Ezh2 overexpression and activity are pivotal in ErbB2-mediated mammary tumourigenesis. These results reveal the hitherto unknown c-Src/mTORC1/PRC2 axis, which is essential for ErbB2-driven carcinogenesis.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Epigenesis, Genetic , Polycomb Repressive Complex 2/genetics , Receptor, ErbB-2/metabolism , src-Family Kinases/metabolism , Adenosine Triphosphate/metabolism , Adult , Animals , Breast Neoplasms/pathology , CSK Tyrosine-Protein Kinase , Carcinogenesis , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Humans , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred NOD , Mice, Transgenic , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Polycomb Repressive Complex 2/metabolism , Protein Biosynthesis , Receptor, ErbB-2/genetics , src-Family Kinases/genetics
20.
Article in English | MEDLINE | ID: mdl-31024446

ABSTRACT

As transcriptional factors, nuclear receptors (NRs) function as major regulators of gene expression. In particular, dysregulation of NR activity has been shown to significantly alter metabolic homeostasis in various contexts leading to metabolic disorders and cancers. The orphan estrogen-related receptor (ERR) subfamily of NRs, comprised of ERRα, ERRß, and ERRγ, for which a natural ligand has yet to be identified, are known as central regulators of energy metabolism. If AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) can be viewed as sensors of the metabolic needs of a cell and responding acutely via post-translational control of proteins, then the ERRs can be regarded as downstream effectors of metabolism via transcriptional regulation of genes for a long-term and sustained adaptive response. In this review, we will focus on recent findings centered on the transcriptional roles played by ERRα in hepatocytes. Modulation of ERRα activity in both in vitro and in vivo models via genetic or pharmacological manipulation coupled with chromatin-immunoprecipitation (ChIP)-on-chip and ChIP-sequencing (ChIP-seq) studies have been fundamental in delineating the direct roles of ERRα in the control of hepatic gene expression. These studies have identified crucial roles for ERRα in lipid and carbohydrate metabolism as well as in mitochondrial function under both physiological and pathological conditions. The regulation of ERRα expression and activity via ligand-independent modes of action including coregulator binding, post-translational modifications (PTMs) and control of protein stability will be discussed in the context that may serve as valuable tools to modulate ERRα function as new therapeutic avenues for the treatment of hepatic metabolic dysfunction and related diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...