Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(5): e11316, 2024 May.
Article in English | MEDLINE | ID: mdl-38694757

ABSTRACT

Widespread species experience a variety of climates across their distribution, which can structure their thermal tolerance, and ultimately, responses to climate change. For ectotherms, activity is highly dependent on temperature, its variability and availability of favourable microclimates. Thermal exposure and tolerance may be structured by the availability and heterogeneity of microclimates for species living along temperature and/or precipitation gradients - but patterns and mechanisms underlying such gradients are poorly understood. We measured critical thermal limits (CTmax and CTmin) for five populations of two sympatric lizard species, a nocturnal gecko (Chondrodactylus bibronii) and a diurnal skink (Trachylepis variegata) and recorded hourly thermal variation for a year in three types of microclimate relevant to the activity of lizards (crevice, full sun and partial shade) for six sites across a precipitation gradient. Using a combination of physiological and modelling approaches, we derived warming tolerance for the present and the end of the century. In the present climate, we found an overall wider thermal tolerance for the nocturnal species relative to the diurnal species, and no variation in CTmax but variable CTmin along the precipitation gradient for both species. However, warming tolerances varied significantly over the course of the day, across months and microhabitats. The diurnal skink was most restricted in its daily activity in the three driest sites with up to six daily hours of restricted activity in the open (i.e. outside refugia) during the summer months, while the impacts for the nocturnal gecko were less severe, due to its higher CTmax and night activity. With climate change, lizards will experience more months where activity is restricted and increased exposure to high temperatures even within the more sheltered microhabitats. Together our results highlight the importance of considering the relevant spatiotemporal scale and habitat for understanding the thermal exposure of diurnal and nocturnal species.

2.
Nat Mater ; 23(7): 905-911, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710799

ABSTRACT

Topologically protected spin whirls in ferromagnets are foreseen as the cart-horse of solitonic information technologies. Nevertheless, the future of skyrmionics may rely on antiferromagnets due to their immunity to dipolar fields, straight motion along the driving force and ultrafast dynamics. While complex topological objects were recently discovered in intrinsic antiferromagnets, mastering their nucleation, stabilization and manipulation with energy-efficient means remains an outstanding challenge. Designing topological polar states in magnetoelectric antiferromagnetic multiferroics would allow one to electrically write, detect and erase topological antiferromagnetic entities. Here we stabilize ferroelectric centre states using a radial electric field in multiferroic BiFeO3 thin films. We show that such polar textures contain flux closures of antiferromagnetic spin cycloids, with distinct antiferromagnetic entities at their cores depending on the electric field polarity. By tuning the epitaxial strain, quadrants of canted antiferromagnetic domains can also be electrically designed. These results open the path to reconfigurable topological states in multiferroic antiferromagnets.

3.
Nano Lett ; 23(19): 9073-9079, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37737821

ABSTRACT

In the room-temperature magnetoelectric multiferroic BiFeO3, the noncollinear antiferromagnetic state is coupled to the ferroelectric order, opening applications for low-power electric-field-controlled magnetic devices. While several strategies have been explored to simplify the ferroelectric landscape, here we directly stabilize a single-domain ferroelectric and spin cycloid state in epitaxial BiFeO3 (111) thin films grown on orthorhombic DyScO3 (011). Comparing them with films grown on SrTiO3 (111), we identify anisotropic in-plane strain as a powerful handle for tailoring the single antiferromagnetic state. In this single-domain multiferroic state, we establish the thickness limit of the coexisting electric and magnetic orders and directly visualize the suppression of the spin cycloid induced by the magnetoelectric interaction below the ultrathin limit of 1.4 nm. This as-grown single-domain multiferroic configuration in BiFeO3 thin films opens an avenue both for fundamental investigations and for electrically controlled noncollinear antiferromagnetic spintronics.

4.
Proc Biol Sci ; 289(1982): 20221011, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36100029

ABSTRACT

The pet trade and Traditional Chinese Medicine (TCM) consumption are major drivers of global biodiversity loss. Tokay geckos (Gekko gecko) are among the most traded reptile species worldwide. In Hong Kong, pet and TCM markets sell tokay geckos while wild populations also persist. To clarify connections between trade sources and destinations, we compared genetics and stable isotopes of wild tokays in local and non-local populations to dried individuals from TCM markets across Hong Kong. We found that TCM tokays are likely not of local origin. Most wild tokays were related to individuals in South China, indicating a probable natural origin. However, two populations contained individuals more similar to distant populations, indicating pet trade origins. Our results highlight the complexity of wildlife trade impacts within trade hubs. Such trade dynamics complicate local legal regulation when endangered species are protected, but the same species might also be non-native and possibly damaging to the environment.


Subject(s)
Endangered Species , Lizards , Animals , Animals, Wild , Biodiversity , Humans , Medicine, Traditional
5.
Conserv Physiol ; 10(1): coac020, 2022.
Article in English | MEDLINE | ID: mdl-35492412

ABSTRACT

While essential in understanding impacts of climate change for organisms, diel variation remains an understudied component of temporal variation in thermal tolerance limits [i.e. the critical thermal minimum (CTmin) and maximum (CTmax)]. For example, a higher Ctmax might be expected for an individual if the measurement is taken during the day (when heat stress is most likely to occur) instead of at night. We measured thermal tolerance (Ctmin and Ctmax) during both the daytime and night-time in 101 nocturnal and diurnal geckos and skinks in Hong Kong and in South Africa, representing six species and covering a range of habitats. We found that period of measurement (day vs. night) only affected Ctmin in South Africa (but not in Hong Kong) and that Ctmax was unaffected. Body size and species were important factors for determining Ctmax in Hong Kong and Ctmin in South Africa, respectively. Overall, however, we did not find consistent diel variation of thermal tolerance and suggest that measurements of critical thermal limits may be influenced by timing of measurement-but that such effects, when present, are likely to be context-dependent.

6.
Phys Rev Lett ; 128(18): 187201, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35594103

ABSTRACT

We report on the formation of topological defects emerging from the cycloidal antiferromagnetic order at the surface of bulk BiFeO_{3} crystals. Combining reciprocal and real-space magnetic imaging techniques, we first observe, in a single ferroelectric domain, the coexistence of antiferromagnetic domains in which the antiferromagnetic cycloid propagates along different wave vectors. We then show that the direction of these wave vectors is not strictly locked to the preferred crystallographic axes as continuous rotations bridge different wave vectors. At the junctions between the magnetic domains, we observe topological line defects identical to those found in a broad variety of lamellar physical systems with rotational symmetries. Our work establishes the presence of these magnetic objects at room temperature in the multiferroic antiferromagnet BiFeO_{3}, offering new possibilities for their use in spintronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...