Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 207, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36813842

ABSTRACT

CD47 recognized by its macrophage receptor SIRPα serves as a "don't eat-me" signal protecting viable cells from phagocytosis. How this is abrogated by apoptosis-induced changes in the plasma membrane, concomitantly with exposure of phosphatidylserine and calreticulin "eat-me" signals, is not well understood. Using STORM imaging and single-particle tracking, we interrogate how the distribution of these molecules on the cell surface correlates with plasma membrane alteration, SIRPα binding, and cell engulfment by macrophages. Apoptosis induces calreticulin clustering into blebs and CD47 mobility. Modulation of integrin affinity impacts CD47 mobility on the plasma membrane but not the SIRPα binding, whereas CD47/SIRPα interaction is suppressed by cholesterol destabilization. SIRPα no longer recognizes CD47 localized on apoptotic blebs. Overall, the data suggest that disorganization of the lipid bilayer at the plasma membrane, by inducing inaccessibility of CD47 possibly due to a conformational change, is central to the phagocytosis process.


Subject(s)
CD47 Antigen , Calreticulin , Humans , Apoptosis , Calreticulin/metabolism , CD47 Antigen/chemistry , CD47 Antigen/metabolism , Cell Membrane/metabolism
2.
FEBS Open Bio ; 11(10): 2693-2704, 2021 10.
Article in English | MEDLINE | ID: mdl-34328698

ABSTRACT

SREC-II (scavenger receptor expressed by endothelial cells II) is a membrane protein encoded by the SCARF2 gene, with high homology to class F scavenger receptor SR-F1, but no known scavenging function. We produced the extracellular domain of SREC-II in a recombinant form and investigated its capacity to interact with common scavenger receptor ligands, including acetylated low-density lipoprotein (AcLDL) and maleylated or acetylated BSA (MalBSA or AcBSA). Whereas no binding was observed for AcLDL, SREC-II ectodomain interacted strongly with MalBSA and bound with high affinity to AcBSA, a property shared with the SR-F1 ectodomain. SREC-II ectodomain also interacted with two SR-F1-specific ligands, complement C1q and calreticulin, with affinities in the 100 nm range. We proceeded to generate a stable CHO cell line overexpressing full-length SREC-II; binding of MalBSA to these cells was significantly increased compared with nontransfected CHO cells. In contrast, no increase in binding could be detected for C1q and calreticulin. We show for the first time that SREC-II has the capacity to interact with the common scavenger receptor ligand MalBSA. In addition, our data highlight similarities and differences in the ligand binding properties of SREC-II in soluble form and at the cell surface, and show that endogenous protein ligands of the ectodomain of SREC-II, such as C1q and calreticulin, are shared with the corresponding domain of SR-F1.


Subject(s)
Endothelial Cells , Scavenger Receptors, Class F , Animals , Cricetinae , Cricetulus , Endothelial Cells/metabolism , Ligands , Receptors, Scavenger , Scavenger Receptors, Class F/genetics , Scavenger Receptors, Class F/metabolism
3.
Front Immunol ; 11: 544, 2020.
Article in English | MEDLINE | ID: mdl-32296440

ABSTRACT

The scavenger receptor SR-F1 binds to and mediates the internalization of a wide range of ligands, and is involved in several immunological processes. We produced recombinant SR-F1 ectodomain and fragments deleted from the last 2 or 5 C-terminal epidermal growth factor-like modules and investigated their role in the binding of acetylated low density lipoprotein (AcLDL), complement C1q, and calreticulin (CRT). C1q measured affinity was in the 100 nM range and C1q interaction occurs via its collagen-like region. We identified two different binding regions on SR-F1: the N-terminal moiety interacts with C1q and CRT whereas the C-terminal moiety binds AcLDL. The role of SR-F1 N-linked glycans was also tested by mutating each of the three glycosylated asparagines. The three mutants retained binding activities for both AcLDL and C1q. A stable THP-1 cell line overexpressing SR-F1 was generated and C1q was shown to bind more strongly to the surface of SR-F1 overexpressing macrophages, with C1q/SR-F1 colocalization observed in some membrane areas. We also observed a higher level of CRT internalization for THP-1 SR-F1 cells. Increasing SR-F1 negatively modulated the uptake of apoptotic cells. Indeed, THP-1 cells overexpressing SR-F1 displayed a lower phagocytic capacity as compared with mock-transfected cells, which could be partially restored by addition of C1q in the extracellular milieu. Our data shed some light on the role of SR-F1 in efferocytosis, through its capacity to bind C1q and CRT, two proteins involved in this process.


Subject(s)
Apoptosis/immunology , Complement C1q/immunology , Macrophages/immunology , Phagocytosis/immunology , Scavenger Receptors, Class F/immunology , Calreticulin/immunology , Cell Communication/immunology , Complement C1q/metabolism , Humans , Scavenger Receptors, Class F/metabolism , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...