Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 38(8): 1578-90, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25630621

ABSTRACT

The sensitivity of the photochemical reflectance index (PRI) to leaf pigmentation and its impacts on its potential as a proxy for light-use efficiency (LUE) have recently been shown to be problematic at the leaf scale. Most leaf-to-leaf and seasonal variability can be explained by such a confounding effect. This study relies on the analysis of PRI light curves that were generated at the canopy scale under natural conditions to derive a precise deconvolution of pigment-related and physiologically related variability in the PRI. These sources of variability were explained by measured or estimated physiologically relevant variables, such as soil water content, that can be used as indicators of water availability and canopy chlorophyll content. The PRI mainly reflected the variability in the pigment content of the canopy. However, the corrected PRI, which was obtained by subtracting the pigment-related seasonal variability from the PRI measurement, was highly correlated with the upscaled LUE measurements. Moreover, the sensitivity of the PRI to the leaf pigment content may mask the PRI versus LUE relationship or result in an artificial relationship that reflects the relationship of chlorophyll versus LUE, depending on the species phenology.


Subject(s)
Photochemical Processes , Pigments, Biological/metabolism , Plant Leaves/physiology , Seasons , Trees/growth & development , Computer Simulation , Light , Linear Models , Photons , Photosynthesis/radiation effects , Pigmentation/radiation effects , Plant Leaves/radiation effects , Soil , Trees/physiology , Trees/radiation effects , Water
2.
Plant Cell Environ ; 37(2): 473-87, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23906049

ABSTRACT

The use of the photochemical reflectance index (PRI) as a promising proxy of light use efficiency (LUE) has been extensively studied, and some issues have been identified, notably the sensitivity of PRI to leaf pigment composition and the variability in PRI response to LUE because of stress. In this study, we introduce a method that enables us to track the short-term PRI response to LUE changes because of photosynthetically active radiation (PAR) changes. The analysis of these short-term relationships between PRI and LUE throughout the growing season in two species (Quercus robur L. and Fagus sylvatica L.) under two different soil water statuses showed a clear change in PRI response to LUE, which is related to leaf pigment content. The use of an estimated or approximated PRI0, defined as the PRI of perfectly dark-adapted leaves, allowed us to separate the PRI variability due to leaf pigment content changes and the physiologically related PRI variability over both daily (PAR-related) and seasonal (soil water content-related) scales. The corrected PRI obtained by subtracting PRI0 from the PRI measurements showed a good correlation with the LUE over both of the species, soil water statuses and over the entire growing season.


Subject(s)
Fagus/physiology , Photosynthesis , Quercus/physiology , Carbon/metabolism , Chlorophyll/metabolism , Droughts , Fagus/radiation effects , Fluorescence , Photochemistry , Plant Leaves/metabolism , Plant Leaves/physiology , Quercus/radiation effects , Water/metabolism
3.
Plant Cell Environ ; 33(12): 2001-11, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20573048

ABSTRACT

Under elevated atmospheric CO(2) concentrations, soil carbon (C) inputs are typically enhanced, suggesting larger soil C sequestration potential. However, soil C losses also increase and progressive nitrogen (N) limitation to plant growth may reduce the CO(2) effect on soil C inputs with time. We compiled a data set from 131 manipulation experiments, and used meta-analysis to test the hypotheses that: (1) elevated atmospheric CO(2) stimulates soil C inputs more than C losses, resulting in increasing soil C stocks; and (2) that these responses are modulated by N. Our results confirm that elevated CO(2) induces a C allocation shift towards below-ground biomass compartments. However, the increased soil C inputs were offset by increased heterotrophic respiration (Rh), such that soil C content was not affected by elevated CO(2). Soil N concentration strongly interacted with CO(2) fumigation: the effect of elevated CO(2) on fine root biomass and -production and on microbial activity increased with increasing soil N concentration, while the effect on soil C content decreased with increasing soil N concentration. These results suggest that both plant growth and microbial activity responses to elevated CO(2) are modulated by N availability, and that it is essential to account for soil N concentration in C cycling analyses.


Subject(s)
Atmosphere , Carbon Cycle , Carbon Dioxide , Nitrogen Cycle , Soil/analysis , Trees/growth & development , Biomass , Fertilizers
4.
Tree Physiol ; 30(2): 177-92, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20018984

ABSTRACT

Two types of physiological mechanisms can contribute to growth decline with age: (i) the mechanisms leading to the reduction of carbon assimilation (input) and (ii) those leading to modification of the resource economy. Surprisingly, the processes relating to carbon allocation have been little investigated as compared to research on the processes governing carbon assimilation. The objective of this paper was thus to test the hypothesis that growth decrease related to age is accompanied by changes in carbon allocation to the benefit of storage and reproductive functions in two contrasting broad-leaved species: beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.). Age-related changes in carbon allocation were studied using a chronosequence approach. Chronosequences, each consisting of several even-aged stands ranging from 14 to 175 years old for beech and from 30 to 134 years old for sessile oak, were divided into five or six age classes. In this study, carbon allocations to growth, storage and reproduction were defined as the relative amount of carbon invested in biomass increment, carbohydrate increment and seed production, respectively. Tree-ring width and allometric relationships were used to assess biomass increment at the tree and stand scales. Below-ground biomass was assessed using a specific allometric relationship between root:shoot ratio and age, established from the literature review. Seasonal variations of carbohydrate concentrations were used to assess carbon allocation to storage. Reproduction effort was quantified for beech stands by collecting seed and cupule production. Age-related flagging of biomass productivity was assessed at the tree and stand scales, and carbohydrate quantities in trees increased with age for both species. Seed and cupule production increased with stand age in beech from 56 gC m(-)(2) year(-1) at 30 years old to 129 gC m(-2) year(-1) at 138 years old. In beech, carbon allocation to storage and reproductive functions increased with age to the detriment of carbon allocation to growth functions. In contrast, the carbon balance between growth and storage remained constant between age classes in sessile oak. The contrasting age-related changes in carbon allocation between beech and sessile oak are discussed with reference to the differences in growing environment, phenology and hydraulic properties of ring-porous and diffuse-porous species.


Subject(s)
Carbon/metabolism , Fagus/growth & development , Quercus/growth & development , Seeds/growth & development , Trees/growth & development , Biomass , Carbohydrate Metabolism , Fagus/metabolism , France , Quercus/metabolism , Reproduction , Trees/metabolism
5.
New Phytol ; 157(3): 605-615, 2003 Mar.
Article in English | MEDLINE | ID: mdl-33873417

ABSTRACT

• The exhaustive distribution of total carbohydrate reserves was investigated in oak and beech trees that were approx. 40 yr old and felled at two dates (October 1999 and June 2000) to estimate variations in reserve amounts at the tree level. • The total nonstructural carbohydrate (TNC) content was highest in the twigs and coarse roots, reaching 10 g 100 g-1 dry matter and 12 g 100 g-1 dry matter for beech and oak twigs, and 13 g 100 g-1 dry matter and 16 g 100 g-1 dry matter for beech and oak roots, respectively. Similar distribution in tree carbohydrates was observed for both species and date, but with contrasting starch/sugar sharing. • Scaling-up to reserve amounts at tree level was performed with extensive organ biomass measurements. Based on the respective biomass of the organs, stem and roots contained the highest quantity of reserves. Between October (before leaf fall) and June (after bud-burst and leaf area index expansion) oaks used double the reserves of beeches. • These differences in the allocation of carbohydrate reserves could arise from differential needs for spring growth and winter maintenance respiration between the two species.

6.
Tree Physiol ; 21(2-3): 145-52, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11303645

ABSTRACT

Respiration of the rhizosphere in a beech (Fagus sylvatica L.) forest was calculated by subtracting microbial respiration associated with organic matter decomposition from daily mean soil CO2 efflux. We used a semi-mechanistic soil organic matter model to simulate microbial respiration, which was validated against "no roots" data from trenched subplots. Rhizosphere respiration exhibited pronounced seasonal variation from 0.2 g C m(-2) day(-1) in January to 2.3 g C m(-2) day(-1) in July. Rhizosphere respiration accounted for 30 to 60% of total soil CO2 efflux, with an annual mean of 52%. The high Q10 (3.9) for in situ rhizosphere respiration was ascribed to the confounding effects of temperature and changes in root biomass and root and shoot activities. When data were normalized to the same soil temperature based on a physiologically relevant Q10 value of 2.2, the lowest values of temperature-normalized rhizosphere respiration were observed from January to March, whereas the highest value was observed in early July when fine root growth is thought to be maximal.


Subject(s)
Fagus/physiology , Plant Roots/physiology , Soil , Trees/physiology , Carbon Dioxide/metabolism , Carbon Dioxide/physiology , Fagus/metabolism , France , Plant Roots/metabolism , Seasons , Trees/metabolism
7.
Tree Physiol ; 17(8_9): 511-519, 1997.
Article in English | MEDLINE | ID: mdl-14759824

ABSTRACT

Three independent methods were used to evaluate transpiration of a boreal forest: the branch bag, sap flow and eddy covariance methods. The branch bag method encloses several thousand needles and gives a continuous record of branch transpiration. The sap flow method provides a continuous record of sap velocity and an estimate of tree transpiration. The eddy covariance method typically measures evaporation rates between a forest and the atmosphere. We deployed an extra eddy covariance system below the forest to estimate canopy transpiration by difference. The three systems detected small water vapor fluxes despite a plentiful supply of energy to drive evaporation. We also observed that transpiration rates were low even when the soil was well supplied with water. Low rates of transpiration were attributed to the canopy's low leaf area index and the marked reduction in stomatal conductance as vapor pressure deficits increased. Water vapor fluxes, derived from the sap flow method, lagged behind those derived by the branch bag method by 1 to 2 h. The sap flow method also suffered from sampling errors caused by the non-uniformity of flow across the sapwood and the spatial variability of sapwood cross section throughout the forest. Despite technical difficulties associated with hourly measurements, daily totals of transpiration agreed well with values derived from micrometeorological systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...