Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 338: 122198, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763724

ABSTRACT

Chitosan (CS) aerogels are highly porous (∼99 %), exhibit ultralow density, and are excellent sorbents for removing ionic pollutants and oils/organic solvents from water. Their abundant hydroxyl and amino groups facilitate the adsorption of ionic pollutants through electrostatic interaction, complexation and chelation mechanisms. Selection of suitable surface wettability is the way to separate oils/organic solvents from water. This review summarizes the most recent developments in improving the adsorption performance, mechanical strength and regeneration of CS aerogels. The structure of the paper follows the extraction of chitosan, preparation and sorption characteristics of CS aerogels for heavy metal ions, organic dyes, and oils/organic solvents, sequentially. A detailed analysis of the parameters that influence the adsorption/absorption performance of CS aerogels is carried out and their effective control for improving the performance is suggested. The analysis of research outcomes of the recently published data came up with some interesting facts that the unidirectional pore structure and characteristics of the functional group of the aerogel and pH of the adsorbate have led to the enhanced adsorption performance of the CS aerogel. Finally, the excerpts of the literature survey highlighting the difficulties and potential of CS aerogels for water remediation are proposed.

2.
Int J Biol Macromol ; 253(Pt 1): 126594, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37660862

ABSTRACT

Rubber is widely recognized as an important material, whose irreplaceable applications range from damping materials to tires. Generally, rubber is vulnerable to oxidative degradation, leading to a deterioration in the material's performance. Therefore, antioxidants are often added to extend the service life of rubber. In this study, crude lignin-based carbon dots (CLCDs) were prepared by a simple hydrothermal treatment of lignin with H2O2 and triethylenetetramine. The thus prepared CLCDs exhibit excellent radical scavenging capability, and were incorporated into natural rubber with vinyl pyridine-styrene-butadiene terpolymer (VPR) as coupling agent. The results revealed that CLCDs could endow NR with excellent antioxidative performance. Interestingly, CLCDs even show superior antioxidant effect towards rubber compared to purified lignin-based carbon dots (PLCDs). This work provides a unique source of inspiration for the preparation of low-cost, highly effective CLCDs from plant biomass waste, most of lignin being used to produce steam and energy, with excellent antioxidant capability for rubber, which is beneficial for a green and sustainable world.


Subject(s)
Lignin , Rubber , Carbon , Antioxidants/pharmacology , Hydrogen Peroxide
3.
Heliyon ; 9(6): e16436, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37292363

ABSTRACT

Extraction of cellulose nanocrystals (CNCs) from agro-residues has received much attention, not only for their unique properties supporting a wide range of potential applications, but also their limited risk to global climate change. This research was conducted to assess Nile roses (Eichhornia crassipes) fibers as a natural biomass to extract CNCs through an acid hydrolysis approach. Nile roses fibers (NRFs) were initially subjected to alkaline (pulping) and bleaching pretreatments. Microcrystalline cellulose (MCC) was used as control in comparison to Nile rose based samples. All samples underwent acid hydrolysis process at a mild temperature (45 °C). The impact of extraction durations ranging from 5 to 30 min on the morphology structure and crystallinity index of the prepared CNCs was investigated. The prepared CNCs were subjected to various characterization techniques, namely: X-ray diffraction (XRD), FT-IR analysis, Transmission electron microscopy (TEM), and X-ray Photoelectron spectroscopy (XPS). The outcomes obtained by XRD showed that the crystallinity index increased as the duration of acid hydrolysis was prolonged up to 10 min, and then decreased, indicating optimal conditions for the dissolution of amorphous zones of cellulose before eroding the crystallized domains. These data were confirmed by FT-IR spectroscopy. However, a minor effect of hydrolysis duration on the degree of crystallinity was noticed for MCC based samples. TEM images illustrated that a spherical morphology of CNCs was formed as a result of 30 min acid hydrolysis, highlighting the optimal 20 min acid hydrolysis to obtain a fibrillar structure. The XPS study demonstrated that the main constituents of extracted CNCs were carbon and oxygen.

4.
Drug Deliv ; 30(1): 51-63, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36474425

ABSTRACT

Sugarcane bagasse-derived nanofibrillated cellulose (NFC), a type of cellulose with a fibrous structure, is potentially used in the pharmaceutical field. Regeneration of this cellulose using a green process offers a more accessible and less ordered cellulose II structure (amorphous cellulose; AmC). Furthermore, the preparation of cross-linked cellulose (NFC/AmC) provides a dual advantage by building a structural block that could exhibit distinct mechanical properties. 3D aerogel scaffolds loaded with risedronate were prepared in our study using NFC or cross-linked cellulose (NFC/AmC), then combined with different concentrations of chitosan. Results proved that the aerogel scaffolds composed of NFC and chitosan had significantly improved the mechanical properties and retarded drug release compared to all other fabricated aerogel scaffolds. The aerogel scaffolds containing the highest concentration of chitosan (SC-T3) attained the highest compressive strength and mean release time values (415 ± 41.80 kPa and 2.61 ± 0.23 h, respectively). Scanning electron microscope images proved the uniform highly porous microstructure of SC-T3 with interconnectedness. All the tested medicated as well as unmedicated aerogel scaffolds had the ability to regenerate bone as assessed using the MG-63 cell line, with the former attaining a higher effect than the latter. However, SC-T3 aerogel scaffolds possessed a lower regenerative effect than those composed of NFC only. This study highlights the promising approach of the use of biopolymers derived from agro-wastes for tissue engineering.


Subject(s)
Chitosan , Saccharum , Risedronic Acid , Cellulose , Bone Regeneration
5.
Int J Biol Macromol ; 223(Pt A): 980-1014, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36375669

ABSTRACT

As the most abundant natural aromatic polymer, tens of million of tons of lignin produced in paper-making or biorefinery industry are used as fuel annually, which is a low-value utilization. Moreover, burning lignin results in large amounts of carbon dioxide and pollutants in the air. The potential of lignin is far from being fully exploited and the search for high value-added application of lignin is highly pursued. Because of the high carbon content of lignin, converting lignin into advanced carbon-based structural or functional materials is regarded as one of the most promising solutions for both environmental protection and utilization of renewable resources. Significant progresses in lignin-based carbon materials (LCMs) including porous carbon, activated carbon, carbon fiber, carbon aerogel, nanostructured carbon, etc., for various valued applications have been witnessed in recent years. Here, this review summarized the recent advances in LCMs from the perspectives of preparation, structure, and applications. In particular, this review attempts to figure out the intrinsic relationship between the structure and functionalities of LCMs from their recent applications. Hopefully, some thoughts and discussions on the structure-property relationship of LCMs can inspire researchers to stride over the present barriers in the preparation and applications of LCMs.


Subject(s)
Lignin , Nanostructures , Lignin/chemistry , Polymers , Porosity
6.
Carbohydr Polym ; 297: 120039, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36184147

ABSTRACT

Recently, in response to the challenges related to energy development and environmental issues, extensive efforts are being made towards the development of supercapacitors based on green and sustainable resources. Aerogel electrodes offer high energy/power autonomy, fast charge-discharge rates, and long charge/discharge cycles over composite film electrodes due to their unique structure, ultra-lightness, high porosity, and large specific surface area. Nanocellulose (NC), a sustainable nanomaterial, has gained popularity as a supercapacitor electrode material owing to its remarkable properties such as biodegradability, tunable surface chemistry, ability to develop 3D aerogel structures, etc. This comprehensive review summarizes the research progress on developing NC-based aerogels for supercapacitor applications. First, the fundamentals of NC extraction from cellulose sources and aerogel processing routes are discussed. An attempt is made to correlate the electrochemical performance of NC-based electrodes with their aerogel structures. Finally, challenges and future prospects for the advancement of NC-based aerogels are addressed.


Subject(s)
Cellulose , Nanostructures , Cellulose/chemistry , Electrodes , Gels/chemistry , Porosity
7.
Carbohydr Polym ; 296: 119946, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36087994

ABSTRACT

Microfibrillated cellulose (MFC) is an emerging cellulosic material that has shown enormous potential in various industrial sectors such as food packaging, cosmetics, pharmaceuticals, filler for cement and paper, and others. Yet, there is still the need to improve its processing in order to reach its full potential. Despite research efforts for the production of MFC, the production volumes remain low because the costs of these products are hardly competitive with synthetic polymers. The present study investigates the conversion of bleached Kraft pulp into MFC using three different oxidative treatments: (1) oxidation with sodium periodate followed by oxidation with hydrogen peroxide to enrich the pulp with carboxyl groups; (2) activation of hydrogen peroxide with copper to produce hydroxyl radicals; and (3) use of hydrogen peroxide alone in alkaline medium. Treatments (1) and (2) allowed producing interesting MFC with reduced energy consumption.


Subject(s)
Cellulose , Eucalyptus , Hydrogen Peroxide , Oxidation-Reduction , Pharmaceutical Preparations
8.
Int J Biol Macromol ; 216: 24-31, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35780918

ABSTRACT

Core-shell (CS) hydrogels show great potential for the controlled release of fertilizers. In this work, we prepared an alginate-coated gelatin-cellulose nanocrystals (CNCs) hydrogel by a simple layer-by-layer process. CNCs were prepared from cotton linter fibers by the sulfuric acid process. They were incorporated into the gelatin hydrogel, and an external alginate membrane was applied to the inner membrane. Compared to neat gelatin hydrogel, the compressive modulus of the nanocomposite with 5.0 wt% CNCs was enhanced by 288 %. In addition, the CS hydrogel showed a slow-release property and better water retention capacity than neat gelatin hydrogel. The main results of this work are listed below: compression test revealed that the addition of the CNC increases the mechanical properties of the hydrogel, and ii) the addition of a second layer of alginate to CNC-reinforced gelatin hydrogel increase the water retention and improve the sustained release of fertilizer. Our study provides easy and green routes to produce CS hydrogels for potential agricultural applications.


Subject(s)
Cellulose , Nanoparticles , Alginates/chemistry , Cellulose/chemistry , Delayed-Action Preparations , Fertilizers , Gelatin/chemistry , Hydrogels/chemistry , Nanoparticles/chemistry , Water
9.
Int J Biol Macromol ; 211: 626-638, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35561858

ABSTRACT

Chemical modification in surface of cellulose nanofibrils CNFs (20 nm) from an endemic and non-significant value-added, Argentine bamboo, was developed. The modification in the CNFs was carried out with three simple routes using a low molecular weight polylactic acid synthesized in our laboratory (PLA1). The first step comprises of protection of the hydroxyl groups of PLA1 through a benzoylation (PLA1Bz). The next step consisted of the activation of carboxyl groups using thionyl chloride and the last reaction was the grafting of the modified PLA onto the CNFs (PLA1Bz-g-CNF). The covalently functionalization is confirmed by spectroscopically techniques as well as PLA1Bz-g-CNFs were characterized by thermal analyses. The PLA1Bz-g-CNFs were taken up such as nanocharges to improve properties of compatibilization and changing surface properties in films based on PLA. The comparison between the films with PLA1Bz-g-CNFs with respect to the physic mixture of the components (PLA1Bz/CNF), shows an improvement in the thermal, mechanical, and surface properties of the material, particularly when 5% of PLA1Bz-g-CNFs was added. The dispersive (γS D) component of film is increased in 36.1 mN/m respect to 29.3 mN/m from the films obtained with the physic mixture nanofibrils without modification and a plasticizing effect was noticed in the final material.


Subject(s)
Cellulose , Nanofibers , Cellulose/chemistry , Nanofibers/chemistry , Polyesters/chemistry , Surface Properties , Tensile Strength
10.
Carbohydr Polym ; 278: 118954, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34973770

ABSTRACT

To achieve synergistic reinforcing and cross-linking effect across interface between hydrophilic nanocellulose and hydrophobic rubber, active thiol groups were introduced at reducing end of CNF while retaining hydroxyl groups on the surface, thus forming a percolation network in nanocomposites. The nanocomposites were obtained by casting/evaporating a mixture of dispersed modified CNF and NR in latex form, in which covalent cross-links were formed between thiol groups and double bonds of NR via photochemically initiated thiol-ene reaction. Strong interfacial interaction between NR matrix and end-modified CNF was characterized by Fourier-transform infrared spectroscopy. The structural and mechanical properties of the nanocomposites were evaluated by scanning electron microscopy, dynamic mechanical analysis and tensile tests. Compared to neat NR, the nanocomposite reinforced with 10 wt% modified CNF showed significantly higher values of tensile strength (0.33 to 5.83 MPa), Young's modulus (0.48 to 45.25 MPa) and toughness (2.63 to 22.24 MJ m-3).


Subject(s)
Cellulose/chemistry , Cross-Linking Reagents/chemistry , Nanofibers/chemistry , Rubber/chemistry , Sulfhydryl Compounds/chemistry , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Tensile Strength
11.
ACS Nano ; 15(12): 20148-20163, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34788992

ABSTRACT

Considering its high specific modulus, nanocellulose, including rigid cellulose nanocrystals (CNCs) and semiflexible cellulose nanofibrils (CNFs), is widely used as a nano-reinforcing filler for polymeric-based composites, which is regarded as the most promising application of these biomass nanoparticles. The quantitative evaluation of the compatibility and dispersion/aggregation state of nanocellulose in polymeric matrices is a critical issue, as it conditions the efficient stress transfer from the matrix to the filler and effective mechanical reinforcement effect. This study reports a comprehensive set of theories and methods to directly evaluate the compatibility and dispersibility of CNCs and CNFs in four polymer matrices with different polarities, where the compatibility was assessing by Hansen solubility and dispersibility by Raman mapping and cluster analysis. Triple-bond modification on the surface of nanocellulose is a promising approach for accurate recognition in composites, exhibiting the individual signal located in the Raman-silent regions of various polymeric matrices. Based on the discussion of the quantitative dispersion factor, a multiscale percolation model is proposed to better predict the mechanical properties of nanocellulose-reinforced composites based on Raman mapping results, in order to update traditional percolation models.

12.
Nanomaterials (Basel) ; 11(11)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34835769

ABSTRACT

Nanocelluloses are promising bio-nano-materials for use as water treatment materials in environmental protection and remediation. Over the past decades, they have been integrated via novel nanoengineering approaches for water treatment processes. This review aims at giving an overview of nanocellulose requirements concerning emerging nanotechnologies of waster treatments and purification, i.e., adsorption, absorption, flocculation, photocatalytic degradation, disinfection, antifouling, ultrafiltration, nanofiltration, and reverse osmosis. Firstly, the nanocellulose synthesis methods (mechanical, physical, chemical, and biological), unique properties (sizes, geometries, and surface chemistry) were presented and their use for capturing and removal of wastewater pollutants was explained. Secondly, different chemical modification approaches surface functionalization (with functional groups, polymers, and nanoparticles) for enhancing the surface chemistry of the nanocellulose for enabling the effective removal of specific pollutants (suspended particles, microorganisms, hazardous metals ions, organic dyes, drugs, pesticides fertilizers, and oils) were highlighted. Thirdly, new fabrication approaches (solution casting, thermal treatment, electrospinning, 3D printing) that integrated nanocelluloses (spherical nanoparticles, nanowhiskers, nanofibers) to produce water treatment materials (individual composite nanoparticles, hydrogels, aerogels, sponges, membranes, and nanopapers) were covered. Finally, the major challenges and future perspectives concerning the applications of nanocellulose based materials in water treatment and purification were highlighted.

13.
Carbohydr Polym ; 255: 117479, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33436241

ABSTRACT

The research in eco-friendly and sustainable materials for packaging applications with enhanced barrier, thermo-mechanical, rheological and anti-bacterial properties has accelerated in the last decade. Last decade has witnessed immense interest in employing nanocellulose (NC) as a sustainable and biodegradable alternative to the current synthetic packaging barrier films. This review article gathers the research information on NC as a choice for food packaging material. It reviews on the employment of NC and its various forms including its chemico-physical treatments into bio/polymers and its impact on the performance of nanocomposites for food packaging application. The review reveals the fact that the research trends towards NC based materials are quite promising for Active Packaging (AP) applications, including the Controlled Release Packaging (CRP) and Responsive Packaging (RP). Finally, it summarizes with the challenges of sustainable packaging, gray areas that need an improvement/focus in order to commercially exploit this wonderful material for packaging application.


Subject(s)
Anti-Bacterial Agents/chemistry , Cellulose/chemistry , Delayed-Action Preparations/chemistry , Food Packaging/methods , Nanocomposites/chemistry , Acrylic Resins/chemistry , Anti-Bacterial Agents/pharmacology , Biodegradation, Environmental , Cellulose/ultrastructure , Chitosan/chemistry , Delayed-Action Preparations/pharmacology , Dopamine/chemistry , Humans , Membranes, Artificial , Polyesters/chemistry , Steam/analysis , Tannins/chemistry
14.
J Colloid Interface Sci ; 582(Pt A): 227-235, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32823124

ABSTRACT

Characterizing the mechanical properties of polymer coatings typically requires access to specialty equipment, the analysis through which can be tedious despite instrumental precision. An alternative method reported in the literature,strain-induced elastic buckling instability for mechanical measurements (SIEBIMM), is a high throughput, facile yet accurate method, used to characterize the Young's modulus of supported films and coatings. SIEBIMM can easily be implemented in both academic and industrial settings. HYPOTHESIS: We hypothesize that the SIEBIMM method has an upper coating thickness limit beyond which the assumptions and practicality of the method are no longer valid. EXPERIMENTS: The Young's moduli of model polyvinyl alcohol coatings (on polydimethylsiloxanesubstrates) with thicknesses ranging from 67 nm to 40 µm were determined using the SIEBIMM method and the data were subjected to a rigorous statistical analysis. FINDINGS: SIEBIMM could accurately characterize coatings up to 35 µm thick. The Young's modulus of all coatings ≤ 35 µm was 1.6 ± 0.1 GPa at 50% RH, which agreed with free-standing polyvinyl alcohol films measured by traditional tensile testing. For the method to be used on thicker coatings, it is essential to consistently measure coating thickness and buckling wavelength at the same location to minimize potential error.

15.
Nanoscale ; 12(45): 22845-22890, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33185217

ABSTRACT

A huge variety of plants are harvested worldwide and their different constituents can be converted into a broad range of bionanomaterials. In parallel, much research effort in materials science and engineering is focused on the formation of nanoparticles and nanostructured materials originating from agricultural residues. Cellulose (40-50%), hemicellulose (20-40%), and lignin (20-30%) represent major plant ingredients and many techniques have been described that separate the main plant components for the synthesis of nanocelluloses, nano-hemicelluloses, and nanolignins with divergent and controllable properties. The minor components, such as essential oils, could also be used to produce non-toxic metal and metal oxide nanoparticles with high bioavailability, biocompatibility, and/or bioactivity. This review describes the chemical structure, the physical and chemical properties of plant cell constituents, different techniques for the synthesis of nanocelluloses, nanohemicelluloses, and nanolignins from various lignocellulose sources and agricultural residues, and the extraction of volatile oils from plants as well as their use in metal and metal oxide nanoparticle production and emulsion preparation. Furthermore, details about the formation of activated carbon nanomaterials by thermal treatment of lignocellulose materials, a few examples of mineral extraction from agriculture waste for nanoparticle fabrication, and the emerging applications of plant-based nanomaterials in different fields, such as biotechnology and medicine, environment protection, environmental remediation, or energy production and storage, are also included. This review also briefly discusses the recent developments and challenges of obtaining nanomaterials from plant residues, and the issues surrounding toxicity and regulation.


Subject(s)
Nanostructures , Oils, Volatile , Cellulose , Lignin , Polysaccharides
16.
Int J Biol Macromol ; 164: 4444-4454, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32896564

ABSTRACT

In this investigation, microcrystalline cellulose (MCC) was functionalized with metformin HCl using (3-chloropropyl)triethixysilane (CPTES) as a coupling agent. Polyethersulfone (PES) membranes were incorporated with different concentrations of modified MCC (MMCC) to enhance its affinity for heavy metals during filtration of aqueous solutions. The composite membranes were characterized via fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), atomic force microscopy (AFM), Brunauer-Emmett-Teller (BET) method, porosity and contact angle measurements and mechanical analysis. The presence of MMCC in the host matrix was confirmed by FTIR. Although composites decomposed at lower temperatures, their thermal stability was sufficient to meet their performance requirements. DSC showed enhanced glass transition temperature (Tg) due to the interfacial interactions between membrane constituents which restrict the mobility of polymer chains. Microscopic imaging revealed higher surface roughness of composites compared to neat PES. Inclusion of MMCC increased the porosity and hydrophilicity of the membrane which consequently, higher permeability can be achieved.


Subject(s)
Cellulose , Membranes, Artificial , Polymers , Sulfones , Calorimetry, Differential Scanning , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Materials Testing , Metformin/pharmacology , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Porosity , Spectroscopy, Fourier Transform Infrared , Surface Properties , Tensile Strength , Thermogravimetry
17.
Chem Commun (Camb) ; 56(74): 10958-10961, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32789400

ABSTRACT

Gradiented sulfonation was performed for the surface modification of cellulose nanocrystals by conjugate addition with sodium vinyl sulfonate moieties. The self-assembly behaviors of the modified nanocrystals in the liquid state as suspensions and in the solid state as films were regulated by their surface chemistry and crystalline properties.

18.
Int J Biol Macromol ; 163: 1579-1590, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32755697

ABSTRACT

Cellulose was and still is the most abundant biopolymer generated from all plant fibers including agricultural wastes. Using this waste as a starting material in the production of new products is a field of great interest. The demand for renewable and available resources in combination with advanced technologies is a necessity to develop new generations of advanced nanomaterials. This review aims to present integrated details on the extraction techniques and structure of nanofibrillated cellulose as well as cellulose nanocrystals derived from agricultural wastes besides the different treatment methods used to be suitable for several pharmaceutical applications. Different pharmaceutical applications are described, including controlled, sustained or rapid drug delivery, stabilizing agent, and its use as safe and sustained environment for cell culture allowing its use in tissue engineering field.


Subject(s)
Cellulose/chemistry , Nanostructures/chemistry , Pharmaceutical Preparations/chemistry , Animals , Biopolymers/chemistry , Drug Delivery Systems/methods , Humans , Nanotechnology/methods , Tissue Engineering/methods
19.
Molecules ; 25(10)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443918

ABSTRACT

Wood-based TEMPO-oxidised cellulose nanofibrils (toCNF) are promising materials for biomedical applications. Cyclodextrins have ability to form inclusion complexes with hydrophobic molecules and are considered as a method to bring new functionalities to these materials. Water sorption and mechanical properties are also key properties for biomedical applications such as drug delivery and tissue engineering. In this work, we report the modification with ß-cyclodextrin (ßCD) of toCNF samples with different carboxyl contents viz. 756 ± 4 µmol/g and 1048 ± 32 µmol/g. The modification was carried out at neutral and acidic pH (2.5) to study the effect of dissociation of the carboxylic acid group. Films processed by casting/evaporation at 40 °C and cryogels processed by freeze-drying were prepared from ßCD modified toCNF suspensions and compared with reference samples of unmodified toCNF. The impact of modification on water sorption and mechanical properties was assessed. It was shown that the water sorption behaviour for films is driven by adsorption, with a clear impact of the chemical makeup of the fibres (charge content, pH, and adsorption of cyclodextrin). Modified toCNF cryogels (acidic pH and addition of cyclodextrins) displayed lower mechanical properties linked to the modification of the cell wall porosity structure. Esterification between ßCD and toCNF under acidic conditions was performed by freeze-drying, and such cryogels exhibited a lower decrease in mechanical properties in the swollen state. These results are promising for the development of scaffold and films with controlled mechanical properties and added value due to the ability of cyclodextrin to form an inclusion complex with active principle ingredient (API) or growth factor (GF) for biomedical applications.


Subject(s)
Cellulose, Oxidized/chemistry , Cryogels/chemistry , Nanostructures/chemistry , beta-Cyclodextrins/chemistry , Adsorption/drug effects , Cyclic N-Oxides/chemistry , Freeze Drying , Nanofibers/chemistry , Porosity , Water/chemistry
20.
Int J Biol Macromol ; 160: 538-547, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32470581

ABSTRACT

This paper reports the manufacturing by 3D printing of scaffolds for in-situ mineralization of hydroxyapatite using aqueous suspensions of alginate and polyvinyl alcohol (PVA)-grafted cellulose nanofibers (CNF). Bifunctional CNF with carboxyl and aldehyde moieties were prepared from bleached bagasse pulp and crosslinked with PVA. Aqueous hydrogels for 3D printing were prepared by directly mixing PVA-grafted CNF with sodium alginate, with and without the addition of phosphate ions. A calcium chloride solution was sprayed during the printing process in order to partially crosslink alginate and to increase the dimensional stability of the printed gel. At the end of the printing process, the prepared scaffolds were dipped into a CaCl2 solution to: i) complete alginate crosslinking and ii) promote hydroxyapatite nucleation and growth by reaction with phosphate ions. In order to better understand the mechanisms governing manufacturing of scaffolds by 3D printing, the rheological behavior of alginate/PVA-grafted CNF and the mechanical properties of unit filaments obtained by direct hydrogel extrusion were investigated. The final scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). This study shows that 3D printed sodium alginate/PVA-grafted CNF hydrogels are promising scaffold materials for bone tissue engineering.


Subject(s)
Alginates/chemistry , Cellulose/chemistry , Durapatite/chemistry , Nanofibers/chemistry , Polyvinyl Alcohol/chemistry , Bone and Bones/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...