Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chimia (Aarau) ; 75(12): 1058-1065, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34920781

ABSTRACT

Contaminants deriving from human activities represent a constantly growing threat to our environment and have a direct impact on plant and animal health. To alleviate this ecological imbalance, biocatalysis offers a green and sustainable alternative to conventional chemical processes. Due to their broad specificity, laccases are enzymes possessing excellent potential for synthetic biotransformations in various fields as well as for the degradation of organic contaminants. Herein, we produced laccases in submerged cultures of P. ostreatus and T. versicolor in three different media. The fungi/medium combination leading to the highest enzymatic activity was malt extract (2%) + yeast extract (3%) + glucose (0.8%). Laccase production was further increased by supplementing this medium with different concentrations of Cu2+, which also provided a better understanding of the induction effect. Additionally, we disclose preliminary results on the interaction of laccases with mediators (ABTS and violuric acid - VA) for two main applications: lignin depolymerisation with guaiacylglycerol-ß-guaiacyl ether (GBG) as lignin model and micropollutant degradation with Remazol Brilliant Blue (RBB) as enzymatic bioremediation model. Promising results were achieved using VA to increase depolymerization of GBG dimer and to enhance RBB decolorisation.


Subject(s)
Copper , Fungi/enzymology , Laccase , Lignin , Biocatalysis , Laccase/biosynthesis
2.
Chimia (Aarau) ; 71(10): 734-738, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29070422

ABSTRACT

Phenolic compounds such as catechol represent a particular type of micropollutant whose high stability prevents rapid decay and metabolization in the environment. We successfully cloned a catechol 2,3-dioxygenase (C2,3O) from Pseudomonas putida mt-2 and expressed it in Escherichia coli BER2566. The biomass isolated from shake-flask fermentations was used to partially purify the enzyme. The enzyme proved unstable in clarified liquid fractions (50 mM Tris buffer, pH 7.6) and lost more than 90% of its activity over 7 h at 25 °C. In the presence of 10% acetone, the process was slowed down and 30% residual activity was still present after 7 h incubation. Storage of the enzyme in clear liquid fractions also proved difficult and total inactivation was achieved after 2 weeks even when kept frozen at -20 °C. Lowering the storage temperature to -80 °C preserved 30% activity over the same period. Only minor reactivation of the affected enzyme could be achieved after incubation at 20 °C in the presence of FeSO4 and/or ascorbic acid. Activity loss seems to be due mostly to Fe2+ oxidation as well as to subunit dissociation in the tetrameric structure. However, complete degradation of 1.0 mM catechol could be achieved at 20 °C and pH 7.6 over a 3 h period when using a suspension of whole cells or alginate-encapsulated cells for the biotransformation. Contrary to the clear liquid fractions, these forms of biocatalyst showed no significant sign of inactivation under the working conditions.


Subject(s)
Catechol 2,3-Dioxygenase/genetics , Environmental Pollutants/metabolism , Recombinant Proteins/biosynthesis , Biocatalysis , Biomass , Biotransformation , Catechols/metabolism , Enzyme Stability , Escherichia coli/genetics , Pseudomonas putida/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL