Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cancer Immunol Immunother ; 70(9): 2701-2719, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34244816

ABSTRACT

Recombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.


Subject(s)
4-1BB Ligand/genetics , Cell- and Tissue-Based Therapy , Erythrocytes/metabolism , Gene Expression , Genetic Therapy , Interleukin-15/genetics , 4-1BB Ligand/metabolism , Animals , Cell- and Tissue-Based Therapy/methods , Erythroid Precursor Cells/metabolism , Female , Flow Cytometry , Genes, Reporter , Genetic Engineering , Genetic Therapy/methods , Humans , Interleukin-15/metabolism , Mice , Models, Animal , Protein Binding , Treatment Outcome , Xenograft Model Antitumor Assays
2.
Cell Rep ; 35(8): 109167, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34038720

ABSTRACT

HIV monoclonal antibodies for viral reservoir eradication strategies will likely need to recognize reactivated infected cells and potently drive Fc-mediated innate effector cell activity. We systematically characterize a library of 185 HIV-envelope-specific antibodies derived from 15 spontaneous HIV controllers (HCs) that selectively exhibit robust serum Fc functionality and compared them to broadly neutralizing antibodies (bNAbs) in clinical development. Within the 10 antibodies with the broadest cell-recognition capability, seven originated from HCs and three were bNAbs. V3-loop-targeting antibodies are enriched among the top cell binders, suggesting the V3-loop may be selectively exposed and accessible on the cell surface. Fc functionality is more variable across antibodies, which is likely influenced by distinct binding topology and corresponding Fc accessibility, highlighting not only the importance of target-cell recognition but also the need to optimize for Fc-mediated elimination. Ultimately, our results demonstrate that this comprehensive selection process can identify monoclonal antibodies poised to eliminate infected cells.


Subject(s)
Antibodies, Monoclonal/therapeutic use , HIV Infections/drug therapy , Adult , Antibodies, Monoclonal/pharmacology , Female , Humans , Male , Middle Aged
3.
Elife ; 102021 04 12.
Article in English | MEDLINE | ID: mdl-33843586

ABSTRACT

A minor subset of individuals infected with HIV-1 develop antibody neutralization breadth during the natural course of the infection, often linked to chronic, high-level viremia. Despite significant efforts, vaccination strategies have been unable to induce similar neutralization breadth and the mechanisms underlying neutralizing antibody induction remain largely elusive. Broadly neutralizing antibody responses can also be found in individuals who control HIV to low and even undetectable plasma levels in the absence of antiretroviral therapy, suggesting that high antigen exposure is not a strict requirement for neutralization breadth. We therefore performed an analysis of paired heavy and light chain B-cell receptor (BCR) repertoires in 12,591 HIV-1 envelope-specific single memory B-cells to determine alterations in the BCR immunoglobulin gene repertoire and B-cell clonal expansions that associate with neutralizing antibody breadth in 22 HIV controllers. We found that the frequency of genomic mutations in IGHV and IGLV was directly correlated with serum neutralization breadth. The repertoire of the most mutated antibodies was dominated by a small number of large clones with evolutionary signatures suggesting that these clones had reached peak affinity maturation. These data demonstrate that even in the setting of low plasma HIV antigenemia, similar to what a vaccine can potentially achieve, BCR selection for extended somatic hypermutation and clonal evolution can occur in some individuals suggesting that host-specific factors might be involved that could be targeted with future vaccine strategies.


Subject(s)
B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Clonal Evolution , HIV Infections/immunology , HIV-1/immunology , Adult , Female , Humans , Male , Middle Aged , United States
4.
mSphere ; 5(6)2020 12 23.
Article in English | MEDLINE | ID: mdl-33361123

ABSTRACT

A prophylactic HIV vaccine would ideally induce protective immunity prior to sexual debut. Children develop broadly neutralizing antibody (bnAb) responses faster and at higher frequencies than adults, but little is known about the underlying mechanisms or the potential role of Fc-mediated effector functions in disease progression. We therefore performed systems immunology, with immunoglobulin profiling, on HIV-infected children with progressive and nonprogressive disease. Pediatric nonprogressors (PNPs) showed distinct immunoglobulin profiles with an increased ability to elicit potent Fc-mediated natural killer (NK)-cell effector functions. In contrast to previous reports in adults, both groups of children showed high levels of gp120-specific IgG Fc glycan sialylation compared to bulk IgG. Importantly, higher levels of Fc glycan sialylation were associated with increased bnAb breadth, providing the first evidence that Fc sialylation may drive affinity maturation of HIV-specific antibodies in children, a mechanism that could be exploited for vaccination strategies.IMPORTANCE To protect future generations against HIV, a vaccine will need to induce immunity by the time of sexual debut and hence requires immunization during childhood. Current strategies for a prophylactic HIV vaccine include the induction of a broadly neutralizing antibody response and the recruitment of potent effector functions of immune cells via the constant antibody Fc region. In this study, we show that nonprogressing HIV-infected children mounted antibody responses against HIV that were able to mediate potent Fc effector functions, which may contribute to the control of HIV replication. Children who had specific glycan structures on the Fc portion of antibodies against HIV were able to neutralize a broader range of HIV variants, providing evidence of a potential role of Fc glycovariation in the development of bnAbs against HIV. These findings complement our knowledge of the distinct immune landscape in early life that could be exploited in the development of vaccine strategies.


Subject(s)
AIDS Vaccines/immunology , Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , HIV Infections/immunology , Immunoglobulin G/immunology , Adolescent , Broadly Neutralizing Antibodies/blood , Child , Female , Glycosylation , HIV Infections/blood , Humans , Immunoglobulin G/blood , Male , Receptors, Fc/immunology
5.
Mol Cancer Ther ; 19(1): 270-281, 2020 01.
Article in English | MEDLINE | ID: mdl-31597714

ABSTRACT

Combinations of chemotherapy with immunotherapy have seen recent clinical success, including two approvals of anti-PD-1/L1 agents in combination with taxane-based chemotherapy in non-small cell lung cancer and triple-negative breast cancer. Here, we present a study on the combination activity and mechanistic rationale of a novel EphA2-targeted liposomal taxane (EphA2-ILs-DTXp) and anti-PD-1. This combination was highly active in mouse syngeneic tumor models, with complete responses observed in 3 of 5 models. In the EMT-6 tumor model, combination of EphA2-ILs-DTXp with anti-PD-1 resulted in a 60% complete response rate, with durable responses that were resistant to rechallenge. These responses were not observed in the absence of CD8+ T cells. Characterization of the immune infiltrates in EMT-6 tumors reveals increased CD8+ T cells, increased CD8+ IFNγ+ CTLs, and an increased CD8/regulatory T-cell (Treg) ratio. These immunomodulatory effects were not observed in mice treated with a combination of docetaxel and anti-PD-1. Pharmacokinetic analysis revealed that the AUC of docetaxel was increased 15 times, from 52.1 to 785 ng/mL/hour, when delivered by EphA2-ILs-DTXp. A dose reduction study of EphA2-ILs-DTXp showed a dose-response relationship for both tumor growth inhibition and the CD8/Treg ratio. Our data indicate that synergism between docetaxel and anti-PD-1 is achievable with nanoliposomal delivery.


Subject(s)
Bridged-Ring Compounds/therapeutic use , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptor, EphA2/metabolism , Taxoids/therapeutic use , Animals , Bridged-Ring Compounds/pharmacology , Disease Models, Animal , Female , Humans , Mice , Neoplasms/pathology , Taxoids/pharmacology
6.
Sci Transl Med ; 11(512)2019 10 02.
Article in English | MEDLINE | ID: mdl-31578241

ABSTRACT

Tumor necrosis factor receptor 2 (TNFR2) is the alternate receptor for TNF and can mediate both pro- and anti-inflammatory activities of T cells. Although TNFR2 has been linked to enhanced suppressive activity of regulatory T cells (Tregs) in autoimmune diseases, the viability of TNFR2 as a target for cancer immunotherapy has been underappreciated. Here, we show that new murine monoclonal anti-TNFR2 antibodies yield robust antitumor activity and durable protective memory in multiple mouse cancer cell line models. The antibodies mediate potent Fc-dependent T cell costimulation and do not result in significant depletion of Tregs Corresponding human agonistic monoclonal anti-TNFR2 antibodies were identified and also had antitumor effects in humanized mouse models. Anti-TNFR2 antibodies could be developed as a novel treatment option for patients with cancer.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Type II/immunology , Animals , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Colonic Neoplasms/therapy , Disease Models, Animal , Female , Humans , Lymphocyte Activation/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
7.
Sci Immunol ; 3(26)2018 08 17.
Article in English | MEDLINE | ID: mdl-30120121

ABSTRACT

HIV-specific broadly neutralizing antibodies (bNAbs) confer protection after passive immunization, but the immunological mechanisms that drive their development are poorly understood. Structural features of bNAbs indicate that they originate from extensive germinal center (GC) selection, which relies on persistent GC activity. However, why a fraction of infected individuals are able to successfully drive more effective affinity maturation is unclear. Delivery of antigens in the form of antibody-immune complexes (ICs), which bind to complement receptors (CRs) or Fc receptors (FcRs) on follicular dendritic cells, represents an effective mechanism for antigen delivery to the GC. We sought to define whether IC-FcR or CR interactions differ among individuals who develop bNAb responses to HIV. Enhanced Fc effector functions and FcR/CR interactions, via altered Fc glycosylation profiles, were observed among individuals with neutralizing antibody responses to HIV compared with those without neutralizing antibody activity. Moreover, both polyclonal neutralizer ICs and monoclonal IC mimics of neutralizer antibodies induced higher antibody titers, higher-avidity antibodies, and expanded GC B cell reactions after immunization of mice via accelerated antigen deposition within B cell follicles in a complement-dependent manner. Thus, these data point to a direct role for altered Fc profile/complement interactions in shaping the maturation of the humoral immune response, providing insights into how GC activity may be enhanced to drive affinity maturation in next-generation vaccine approaches.


Subject(s)
Antibodies, Neutralizing/immunology , Complement System Proteins/immunology , HIV Antibodies/immunology , Immunoglobulin Fc Fragments/immunology , Animals , Antigens, Viral/immunology , Cell Line , Female , Glycosylation , Immunity, Humoral , Immunoglobulin G/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, Fc/immunology
8.
Front Immunol ; 8: 1104, 2017.
Article in English | MEDLINE | ID: mdl-28943879

ABSTRACT

Immunological events in acute HIV-1 infection before peak viremia (hyperacute phase) may contribute to the development of broadly cross-neutralizing antibodies. Here, we used pre-infection and acute-infection peripheral blood mononuclear cells and plasma samples from 22 women, including 10 who initiated antiretroviral treatment in Fiebig stages I-V of acute infection to study B cell subsets and B-cell associated cytokines (BAFF and CXCL13) kinetics for up to ~90 days post detection of plasma viremia. Frequencies of B cell subsets were defined by flow cytometry while plasma cytokine levels were measured by ELISA. We observed a rapid but transient increase in exhausted tissue-like memory, activated memory, and plasmablast B cells accompanied by decline in resting memory cells in untreated, but not treated women. B cell subset frequencies in untreated women positively correlated with viral loads but did not predict emergence of cross-neutralizing antibodies measured 12 months post detection of plasma viremia. Plasma BAFF and CXCL13 levels increased only in untreated women, but their levels did not correlate with viral loads. Importantly, early CXCL13 but not BAFF levels predicted the later emergence of detectable cross-neutralizing antibodies at 12 months post detection of plasma viremia. Thus, hyperacute HIV-1 infection is associated with B cell subset changes, which do not predict emergence of cross-neutralizing antibodies. However, plasma CXCL13 levels during hyperacute infection predicted the subsequent emergence of cross-neutralizing antibodies, providing a potential biomarker for the evaluation of vaccines designed to elicit cross-neutralizing activity or for natural infection studies to explore mechanisms underlying development of neutralizing antibodies.

9.
Clin Infect Dis ; 64(8): 1098-1104, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28158448

ABSTRACT

Background: Understanding the mechanism(s) by which broadly neutralizing antibodies (bNAbs) emerge naturally following infection is crucial for the development of a protective vaccine against human immunodeficiency virus (HIV). Although previous studies have implicated high viremia and associated immune activation as potential drivers for the development of bNAbs, here we sought to unlink the effect of these 2 parameters by evaluating the key inflammatory predictors of bNAb development in HIV-infected individuals who spontaneously control HIV in the absence of antiretroviral therapy ("controllers"). Methods: The breadth of antibody-mediated neutralization against 11 tier 2 or 3 viruses was assessed in 163 clade B spontaneous controllers of HIV. Plasma levels of 17 cytokines were screened in the same set of subjects. The relationship of the inflammatory signature was assessed in the context of viral blips or viral RNA levels in peripheral blood or gastrointestinal biopsies from aviremic controllers (<50 copies RNA/mL) and in the context of viral sequence diversity analysis in the plasma of viremic controllers (<50-2000 copies RNA/mL). Results: A unique inflammatory profile, including high plasma levels of CXCL13, sCD40L, IP10, RANTES, and TNFα, was observed in HIV controllers who developed bNAbs. Interestingly, viral load and tissue viremia, but not intermittent viral blips, were associated with these cytokine profiles. However, viral diversity was not significantly associated with increased breadth in controllers. Conclusion: These results suggest that low antigenic diversity in the setting of a unique inflammatory profile associated with antigen persistence may be linked to the evolution of neutralizing antibody breadth.


Subject(s)
Antibodies, Neutralizing/blood , HIV Antibodies/blood , HIV Infections/immunology , HIV Infections/pathology , HIV/immunology , Inflammation/pathology , Cytokines/blood , Humans , Intestinal Mucosa/virology , RNA, Viral/blood , Viral Load
10.
J Immunol Methods ; 434: 53-60, 2016 07.
Article in English | MEDLINE | ID: mdl-27094484

ABSTRACT

Despite a growing number of studies investigating the impact of natural killer (NK) cells on HIV-1 pathogenesis, the exact mechanism by which NK cells recognize HIV-1-infected cells and exert immunological pressure on HIV-1 remains unknown. Previously several groups including ours have introduced autologous HIV-1-infected CD4(+) T cells as suitable target cells to study NK-cell function in response to HIV-1 infection in vitro. Here, we re-evaluated and optimized a standardized in vitro assay that allows assessing the antiviral capacity of NK cells. This includes the implementation of HIV-1 RNA copy numbers as readout for NK-cell-mediated inhibition of HIV-1 replication and the investigation of inter-assay variation in comparison to previous methods, such as HIV-1 p24 Gag production and frequency of p24(+) CD4(+) T cells. Furthermore, we investigated the possibility to hasten the duration of the assay and provide concepts for downstream applications. Autologous CD4(+) T cells and NK cells were obtained from peripheral blood of HIV-negative healthy individuals and were separately enriched through negative selection. CD4(+) T cells were infected with the HIV-1 strain JR-CSF at an MOI of 0.01. Infected CD4(+) T cells were then co-cultured with primary NK cells at various effector:target ratios for up to 14days. Supernatants obtained from media exchanged at days 4, 7, 11 and 14 were used for quantification of HIV-1 p24 Gag and HIV-1 RNA copy numbers. In addition, frequency of infected CD4(+) T cells was determined by flow cytometric detection of intracellular p24 Gag. The assay displayed minimal inter-assay variation when utilizing viral RNA quantification or p24 Gag concentration for the assessment of viral replication. Viral RNA quantification was more rigorous to display magnitude and kinetics of NK-cell-mediated inhibition of HIV-1 replication, longitudinally and between tested individuals. The results of this study demonstrate that NK-cell-mediated inhibition of HIV-1 replication can be reliably quantified in vitro, and that viral RNA quantification is comparable to p24 Gag quantification via ELISA, providing a robust measurement for NK-cell-mediated inhibition of viral replication. Overall, the described assay provides an optimized tool to study the antiviral capacity of NK cells against HIV-1 and an additional experimental tool to investigate the molecular determinants of NK-cell recognition of virus-infected cells.


Subject(s)
HIV-1/immunology , Killer Cells, Natural/immunology , Virus Replication , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , HIV Core Protein p24/analysis , HIV Infections/immunology , HIV-1/physiology , Healthy Volunteers , Humans , Killer Cells, Natural/virology , RNA, Viral/analysis
11.
Open Forum Infect Dis ; 2(1): ofu117, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25884005

ABSTRACT

Background. Human immunodeficiency virus (HIV)-1 elite controllers (ECs) represent an ideal population to study the effects of HIV persistence on chronic inflammation in the absence of antiretroviral therapy (ART). Methods. Twenty inflammatory markers measured in cohorts of ECs, HIV suppressed noncontrollers, and HIV-uninfected controls were compared using rank-based tests and partial least squares discriminant analysis (PLSDA). Spearman correlations were determined among the inflammatory markers, residual viremia by the single-copy assay, and CD4(+) T cell slope. Results. Significant differences were seen between cohorts in 15 of the soluble inflammatory markers. Human immunodeficiency virus-1 ECs were found to have the highest levels for all of the markers with the exception of RANTES. In particular, median levels of 7 inflammatory markers (soluble CD14 [sCD14], interferon [IFN]-γ, IFN-γ-inducible protein [IP]-10, interleukin [IL]-4, IL-10, sCD40L, and granulocyte-macrophage colony-stimulating factor) were twice as high in the HIV-1 ECs compared with either of the HIV-suppressed or uninfected groups. Multivariate PLSDA analysis of inflammatory markers improved differentiation between the patient cohorts, discerning gender differences in inflammatory profile amongst individuals on suppressive ART. Soluble markers of inflammation in ECs were not associated with either levels of residual HIV-1 viremia or CD4(+) T cell decline. Conclusions. Despite maintaining relatively low levels of viremia, HIV-1 ECs had elevated levels of a set of key inflammatory markers. Additional studies are needed to determine whether ECs may benefit from ART and to further evaluate the observed gender differences.

12.
J Immunol ; 194(6): 2769-75, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25667414

ABSTRACT

Elevated levels of the chemokine CXCL13 have been observed in the plasma of chronically HIV-1-infected subjects and have been correlated with plasma viremia, which in turn has been linked to progressive dysregulation of humoral responses. In this study we sought to identify mechanisms of CXCL13 induction in response to HIV-1 infection. Plasma levels of CXCL13 in HIV-1-infected antiretroviral therapy-naive subjects correlated with viral load and were higher compared with antiretroviral therapy-treated HIV-1-infected and HIV-1-uninfected subjects. To elucidate the relationship between HIV-1 viremia and CXCL13 plasma levels, PBMCs from uninfected donors were stimulated with HIV-1 infectious virions, HIV-1 ssRNA, TLR 7 and 8 agonists, or IFN-α. The cellular sources of CXCL13 were determined by intracellular cytokine staining of cell populations. CXCL13 was produced by monocytes after stimulation with TLR 7 and 8 ligands or HIV-1-derived ssRNA. CXCL13 production by monocytes required TLR7 activation of plasmacytoid dendritic cells and secretion of type I IFN. IFN-α alone was sufficient to induce CXCL13 expression in human monocytes. In sum, we identified a novel mechanism of HIV-1-induced CXCL13 secretion-one caused by TLR7 induction of type I IFN by plasmacytoid dendritic cells and subsequent IFN stimulation of monocytes. Our findings are relevant in understanding how HIV-1 infection leads to immune dysregulation and provide the opportunity to develop and test potential therapeutic interventions.


Subject(s)
Chemokine CXCL13/immunology , HIV-1/immunology , Interferon-alpha/immunology , Monocytes/immunology , RNA, Viral/immunology , Toll-Like Receptor 7/immunology , Anti-Retroviral Agents/therapeutic use , Cells, Cultured , Chemokine CXCL13/genetics , Chemokine CXCL13/metabolism , Cohort Studies , Dendritic Cells/immunology , Dendritic Cells/metabolism , Flow Cytometry , Gene Expression/immunology , HIV Infections/blood , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/genetics , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Imidazoles/pharmacology , Interferon-alpha/metabolism , Interferon-alpha/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Monocytes/metabolism , Monocytes/virology , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/metabolism , Viremia/drug therapy , Viremia/immunology , Viremia/virology
13.
Eur J Immunol ; 44(10): 2925-37, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25043633

ABSTRACT

Fc-related antibody activities, such as antibody-dependent cellular cytotoxicity (ADCC), or more broadly, antibody-mediated cellular viral inhibition (ADCVI), play a role in curbing early SIV viral replication, are enriched in human long-term infected nonprogressors, and could potentially contribute to protection from infection. However, little is known about the mechanism by which such humoral immune responses are naturally induced following infection. Here, we focused on the early evolution of the functional antibody response, largely driven by the Fc portion of the antibody, in the context of the evolving binding and neutralizing antibody response, which is driven mainly by the antibody-binding fragment (Fab). We show that ADCVI/ADCC-inducing responses in humans are rapidly generated following acute HIV-1 infection, peak at approximately 6 months postinfection, but decay rapidly in the setting of persistent immune activation, as Fab-related activities persistently increase. Moreover, the loss of Fc activity occurred in synchrony with a loss of HIV-specific IgG3 responses. Our data strongly suggest that Fc- and Fab-related antibody functions are modulated in a distinct manner following acute HIV infection. Vaccination strategies intended to optimally induce both sets of antiviral antibody activities may, therefore, require a fine tuning of the inflammatory response.


Subject(s)
Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , HIV Infections/immunology , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Adult , Antibodies, Neutralizing/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Male , Middle Aged
14.
PLoS One ; 9(6): e99353, 2014.
Article in English | MEDLINE | ID: mdl-24901871

ABSTRACT

BACKGROUND: KIR2DS4 gene variants encode full-length and truncated protein products, with only the former serving as membrane-bound receptors to activate natural killer (NK) cells. We have previously shown that full-length KIR2DS4 was associated with relatively high viral load and accelerated heterosexual HIV-1 transmission. Our objective here was to provide confirmatory data and to offer new insights about the potential mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Mixed models for repeated (longitudinal) outcome measurements on 207 HIV-1 seropositive American youth revealed an association of full-length KIR2DS4 with relatively high viral load and low CD4+ T-cell count (p<0.01 for both). Depending on KIR2DS4 expression (presence or absence) on cell surface, NK cells from 43 individuals with untreated, chronic HIV-1 infection often differed in functional properties, including degranulation and secretion of IFN-γ and MIP-1ß. In particular, polyfunctional NK cells were enriched in the KIR2DS4-positive subset. CONCLUSIONS/SIGNIFICANCE: Full-length KIR2DS4 promotes HIV-1 pathogenesis during chronic infection, probably through the maintenance of an excessively pro-inflammatory state.


Subject(s)
HIV Infections/pathology , HIV-1/genetics , HIV-1/pathogenicity , Killer Cells, Natural/metabolism , Receptors, KIR/metabolism , Adolescent , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cell Line , Chronic Disease , Cross-Sectional Studies , Female , Genotype , HIV Infections/virology , HLA Antigens/genetics , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Linear Models , Longitudinal Studies , Male , Receptors, KIR/genetics , Viral Load , Young Adult
15.
PLoS One ; 9(5): e97229, 2014.
Article in English | MEDLINE | ID: mdl-24820481

ABSTRACT

Recent immune correlates analysis from the RV144 vaccine trial has renewed interest in the role of non-neutralizing antibodies in mediating protection from infection. While neutralizing antibodies have proven difficult to induce through vaccination, extra-neutralizing antibodies, such as those that mediate antibody-dependent cellular cytotoxicity (ADCC), are associated with long-term control of infection. However, while several non-neutralizing monoclonal antibodies have been tested for their protective efficacy in vivo, no studies to date have tested the protective activity of naturally produced polyclonal antibodies from individuals harboring potent ADCC activity. Because ADCC-inducing antibodies are highly enriched in elite controllers (EC), we passively transferred highly functional non-neutralizing polyclonal antibodies, purified from an EC, to assess the potential impact of polyclonal non-neutralizing antibodies on a stringent SHIV-SF162P3 challenge in rhesus monkeys. Passive transfer of a low-dose of ADCC inducing antibodies did not protect from infection following SHIV-SF162P3 challenge. Passively administered antibody titers and gp120-specific, but not gp41-specific, ADCC and antibody induced phagocytosis (ADCP) were detected in the majority of the monkeys, but did not correlate with post infection viral control. Thus these data raise the possibility that gp120-specific ADCC activity alone may not be sufficient to control viremia post infection but that other specificities or Fc-effector profiles, alone or in combination, may have an impact on viral control and should be tested in future passive transfer experiments.


Subject(s)
Antibodies, Viral/immunology , Immunization, Passive , Simian Immunodeficiency Virus/immunology , Animals , Antibody Specificity , Antibody-Dependent Cell Cytotoxicity , Dose-Response Relationship, Immunologic , Immunoglobulin G/immunology , Macaca mulatta , Membrane Glycoproteins/immunology , Viral Envelope Proteins/immunology
16.
Sci Transl Med ; 6(228): 228ra38, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24648341

ABSTRACT

The human phase 2B RV144 ALVAC-HIV vCP1521/AIDSVAX B/E vaccine trial, held in Thailand, resulted in an estimated 31.2% efficacy against HIV infection. By contrast, vaccination with VAX003 (consisting of only AIDSVAX B/E) was not protective. Because protection within RV144 was observed in the absence of neutralizing antibody activity or cytotoxic T cell responses, we speculated that the specificity or qualitative differences in Fc-effector profiles of nonneutralizing antibodies may have accounted for the efficacy differences observed between the two trials. We show that the RV144 regimen elicited nonneutralizing antibodies with highly coordinated Fc-mediated effector responses through the selective induction of highly functional immunoglobulin G3 (IgG3). By contrast, VAX003 elicited monofunctional antibody responses influenced by IgG4 selection, which was promoted by repeated AIDSVAX B/E protein boosts. Moreover, only RV144 induced IgG1 and IgG3 antibodies targeting the crown of the HIV envelope V2 loop, albeit with limited coverage of breakthrough viral sequences. These data suggest that subclass selection differences associated with coordinated humoral functional responses targeting strain-specific protective V2 loop epitopes may underlie differences in vaccine efficacy observed between these two vaccine trials.


Subject(s)
AIDS Vaccines/immunology , HIV Infections/prevention & control , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , HIV/physiology , HIV Antibodies/biosynthesis , Humans
17.
J Virol ; 88(5): 2799-809, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24352471

ABSTRACT

UNLABELLED: Understanding the coordination between humoral and cellular immune responses may be the key to developing protective vaccines, and because genetic studies of long-term HIV-1 nonprogressors have associated specific HLA-B alleles with spontaneous control of viral replication, this subject group presents an opportunity to investigate relationships between arms of the adaptive immune system. Given evidence suggesting that cellular immunity may play a role in viral suppression, we sought to determine whether and how the humoral immune response might vary among controllers. Significantly, Fc-mediated antibody effector functions have likewise been associated with durable viral control. In this study, we compared the effector function and biophysical features of HIV-specific antibodies in a cohort of controllers with and without protective HLA-B alleles in order to investigate whether there was evidence for multiple paths to HIV-1 control, or whether cellular and humoral arms of immunity might exhibit coordinated profiles. However, with the exception of IgG2 antibodies to gp41, HLA status was not associated with divergent humoral responses. This finding did not result from uniform antibody responses across subjects, as controllers could be regrouped according to strong differences in their HIV-specific antibody subclass specificity profiles. These divergent antibody profiles were further associated with significant differences in nonneutralizing antibody effector function, with levels of HIV-specific IgG1 acting as the major distinguishing factor. Thus, while HLA background among controllers was associated with minimal differences in humoral function, antibody subclass and specificity profiles were associated with divergent effector function, suggesting that these features could be used to make functional predictions. Because these nonneutralizing antibody activities have been associated with spontaneous viral control, reduced viral load, and nonprogression in infected subjects and protection in vaccinated subjects, understanding the specific features of IgGs with potentiated effector function may be critical to vaccine and therapeutic antibody development. IMPORTANCE: In this study, we investigated whether the humoral and cellular arms of adaptive immunity exhibit coordinated or compensatory activity by studying the antibody response among HIV-1 controllers with different genetic backgrounds.


Subject(s)
Antibody Specificity/immunology , HIV Antibodies/immunology , HIV Infections/genetics , HIV Infections/immunology , HIV-1/immunology , HLA-B Antigens/genetics , Alleles , Cluster Analysis , Cytotoxicity, Immunologic , HIV Antibodies/classification , HIV Infections/virology , HIV Long-Term Survivors , HLA-B Antigens/immunology , Humans , Immunoglobulin G/classification , Immunoglobulin G/immunology , Microarray Analysis , Receptors, IgG/metabolism , Viral Proteins/immunology
18.
Cell ; 155(3): 531-9, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24243013

ABSTRACT

The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of such global HIV-1 vaccine antigens has not previously been evaluated. Here, we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of infection following heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection correlated with vaccine-elicited binding, neutralizing, and functional nonneutralizing antibodies, suggesting that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy for the development of a global HIV-1 vaccine. PAPERCLIP:


Subject(s)
AIDS Vaccines/immunology , HIV-1 , Animals , Antibody Formation , Female , HIV Antigens/immunology , Human Immunodeficiency Virus Proteins/immunology , Immunity, Cellular , Macaca mulatta , Male , Molecular Sequence Data , Specific Pathogen-Free Organisms
19.
J Clin Invest ; 123(5): 2183-92, 2013 May.
Article in English | MEDLINE | ID: mdl-23563315

ABSTRACT

While the induction of a neutralizing antibody response against HIV remains a daunting goal, data from both natural infection and vaccine-induced immune responses suggest that it may be possible to induce antibodies with enhanced Fc effector activity and improved antiviral control via vaccination. However, the specific features of naturally induced HIV-specific antibodies that allow for the potent recruitment of antiviral activity and the means by which these functions are regulated are poorly defined. Because antibody effector functions are critically dependent on antibody Fc domain glycosylation, we aimed to define the natural glycoforms associated with robust Fc-mediated antiviral activity. We demonstrate that spontaneous control of HIV and improved antiviral activity are associated with a dramatic shift in the global antibody-glycosylation profile toward agalactosylated glycoforms. HIV-specific antibodies exhibited an even greater frequency of agalactosylated, afucosylated, and asialylated glycans. These glycoforms were associated with enhanced Fc-mediated reduction of viral replication and enhanced Fc receptor binding and were consistent with transcriptional profiling of glycosyltransferases in peripheral B cells. These data suggest that B cell programs tune antibody glycosylation actively in an antigen-specific manner, potentially contributing to antiviral control during HIV infection.


Subject(s)
HIV Antibodies/immunology , HIV Antigens/immunology , HIV Infections/immunology , Immunoglobulin Fc Fragments/immunology , Gene Expression Profiling , Gene Expression Regulation , Glycosylation , HIV Antibodies/chemistry , Humans , Immunity, Innate , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Mass Spectrometry , Polysaccharides/chemistry , Protein Isoforms/chemistry , Transcription, Genetic , Virus Replication
20.
J Virol ; 87(10): 5468-76, 2013 May.
Article in English | MEDLINE | ID: mdl-23468489

ABSTRACT

While development of an HIV vaccine that can induce neutralizing antibodies remains a priority, decades of research have proven that this is a daunting task. However, accumulating evidence suggests that antibodies with the capacity to harness innate immunity may provide some protection. While significant research has focused on the cytolytic properties of antibodies in acquisition and control, less is known about the role of additional effector functions. In this study, we investigated antibody-dependent phagocytosis of HIV immune complexes, and we observed significant differences in the ability of antibodies from infected subjects to mediate this critical effector function. We observed both quantitative differences in the capacity of antibodies to drive phagocytosis and qualitative differences in their FcγR usage profile. We demonstrate that antibodies from controllers and untreated progressors exhibit increased phagocytic activity, altered Fc domain glycosylation, and skewed interactions with FcγR2a and FcγR2b in both bulk plasma and HIV-specific IgG. While increased phagocytic activity may directly influence immune activation via clearance of inflammatory immune complexes, it is also plausible that Fc receptor usage patterns may regulate the immune response by modulating downstream signals following phagocytosis--driving passive degradation of internalized virus, release of immune modulating cytokines and chemokines, or priming of a more effective adaptive immune response.


Subject(s)
Antigen-Antibody Complex/metabolism , HIV Antibodies/immunology , HIV/immunology , Phagocytosis , Receptors, IgG/metabolism , Antibody Affinity , HIV Infections/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...