Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38787390

ABSTRACT

Archaeal cell biology is an emerging field expected to identify fundamental cellular processes, help resolve the deep evolutionary history of cellular life, and contribute new components and functions in biotechnology and synthetic biology. To facilitate these, we have developed plasmid vectors that allow convenient cloning and production of proteins and fusion proteins with flexible, rigid, or semi-rigid linkers in the model archaeon Haloferax volcanii. For protein subcellular localization studies using fluorescent protein (FP) tags, we created vectors incorporating a range of codon-optimized fluorescent proteins for N- or C-terminal tagging, including GFP, mNeonGreen, mCherry, YPet, mTurquoise2 and mScarlet-I. Obtaining functional fusion proteins can be challenging with proteins involved in multiple interactions, mainly due to steric interference. We demonstrated the use of the new vector system to screen for improved function in cytoskeletal protein FP fusions, and identified FtsZ1-FPs that are functional in cell division and CetZ1-FPs that are functional in motility and rod cell development. Both the type of linker and the type of FP influenced the functionality of the resulting fusions. The vector design also facilitates convenient cloning and tandem expression of two genes or fusion genes, controlled by a modified tryptophan-inducible promoter, and we demonstrated its use for dual-colour imaging of tagged proteins in H. volcanii cells. These tools should promote further development and applications of archaeal molecular and cellular biology and biotechnology.


Subject(s)
Archaeal Proteins , Cloning, Molecular , Genetic Vectors , Haloferax volcanii , Luminescent Proteins , Plasmids , Haloferax volcanii/genetics , Haloferax volcanii/metabolism , Genetic Vectors/genetics , Genetic Vectors/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Plasmids/genetics , Plasmids/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism
2.
Pathog Dis ; 822024 Feb 07.
Article in English | MEDLINE | ID: mdl-38794885

ABSTRACT

Urinary tract infection (UTI), one of the most common bacterial infections worldwide, is a typical example of an infection that is often polymicrobial in nature. While the overall infection course is known on a macroscale, bacterial behavior is not fully understood at the cellular level and bacterial pathophysiology during multispecies infection is not well characterized. Here, using clinically relevant bacteria, human epithelial bladder cells and human urine, we establish co-infection models combined with high resolution imaging to compare single- and multi-species bladder cell invasion events in three common uropathogens: uropathogenic Escherichia coli (UPEC), Klebsiella pneumoniae and Enterococcus faecalis. While all three species invaded the bladder cells, under flow conditions the Gram-positive E. faecalis was significantly less invasive compared to the Gram-negative UPEC and K. pneumoniae. When introduced simultaneously during an infection experiment, all three bacterial species sometimes invaded the same bladder cell, at differing frequencies suggesting complex interactions between bacterial species and bladder cells. Inside host cells, we observed encasement of E. faecalis colonies specifically by UPEC. During subsequent dispersal from the host cells, only the Gram-negative bacteria underwent infection-related filamentation (IRF). Taken together, our data suggest that bacterial multispecies invasions of single bladder cells are frequent and support earlier studies showing intraspecies cooperation on a biochemical level during UTI.


Subject(s)
Enterococcus faecalis , Epithelial Cells , Klebsiella pneumoniae , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Urinary Tract Infections/microbiology , Enterococcus faecalis/physiology , Epithelial Cells/microbiology , Uropathogenic Escherichia coli/physiology , Klebsiella pneumoniae/physiology , Urinary Bladder/microbiology , Urinary Bladder/cytology , Coinfection/microbiology , Cell Line , Host-Pathogen Interactions
3.
Proc Natl Acad Sci U S A ; 121(10): e2311321121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408251

ABSTRACT

Since their discovery, extracellular vesicles (EVs) have changed our view on how organisms interact with their extracellular world. EVs are able to traffic a diverse array of molecules across different species and even domains, facilitating numerous functions. In this study, we investigate EV production in Euryarchaeota, using the model organism Haloferax volcanii. We uncover that EVs enclose RNA, with specific transcripts preferentially enriched, including those with regulatory potential, and conclude that EVs can act as an RNA communication system between haloarchaea. We demonstrate the key role of an EV-associated small GTPase for EV formation in H. volcanii that is also present across other diverse evolutionary branches of Archaea. We propose the name, ArvA, for the identified family of archaeal vesiculating GTPases. Additionally, we show that two genes in the same operon with arvA (arvB and arvC) are also involved in EV formation. Both, arvB and arvC, are closely associated with arvA in the majority of other archaea encoding ArvA. Our work demonstrates that small GTPases involved in membrane deformation and vesiculation, ubiquitous in Eukaryotes, are also present in Archaea and are widely distributed across diverse archaeal phyla.


Subject(s)
Euryarchaeota , Extracellular Vesicles , Haloferax volcanii , Monomeric GTP-Binding Proteins , Euryarchaeota/genetics , Archaea/genetics , RNA , Haloferax volcanii/genetics , Extracellular Vesicles/genetics
4.
Front Microbiol ; 14: 1270665, 2023.
Article in English | MEDLINE | ID: mdl-37840741

ABSTRACT

Haloferax volcanii and other Haloarchaea can be pleomorphic, adopting different shapes, which vary with growth stages. Several studies have shown that H. volcanii cell shape is sensitive to various external factors including growth media and physical environment. In addition, several studies have noticed that the presence of a recombinant plasmid in the cells is also a factor impacting H. volcanii cell shape, notably by favoring the development of rods in early stages of growth. Here we investigated the reasons for this phenomenon by first studying the impact of auxotrophic mutations on cell shape in strains that are commonly used as genetic backgrounds for selection during strain engineering (namely: H26, H53, H77, H98, and H729) and secondly, by studying the effect of the presence of different plasmids containing selection markers on the cell shape of these strains. Our study showed that most of these auxotrophic strains have variation in cell shape parameters including length, aspect ratio, area and circularity and that the plasmid presence is impacting these parameters too. Our results indicated that ΔhdrB strains and hdrB selection markers have the most influence on H. volcanii cell shape, in addition to the sole presence of a plasmid. Finally, we discuss limitations in studying cell shape in H. volcanii and make recommendations based on our results for improving reproducibility of such studies.

5.
Front Microbiol ; 14: 1095621, 2023.
Article in English | MEDLINE | ID: mdl-37065119

ABSTRACT

Halorubrum lacusprofundi is a cold-adapted halophilic archaeon isolated from Deep Lake, Antarctica. Hrr. lacusprofundi is commonly used to study adaptation to cold environments and thereby a potential source for biotechnological products. Additionally, in contrast to other haloarchaeal model organisms, Hrr. lacusprofundi is also susceptible to a range of different viruses and virus-like elements, making it a great model to study virus-host interactions in a cold-adapted organism. A genetic system has previously been reported for Hrr. lacusprofundi; however, it does not allow in-frame deletions and multiple gene knockouts. Here, we report the successful generation of uracil auxotrophic (pyrE2) mutants of two strains of Hrr. lacusprofundi. Subsequently, we attempted to generate knockout mutants using the auxotrophic marker for selection. However, surprisingly, only the combination of the auxotrophic marker and antibiotic selection allowed the timely and clean in-frame deletion of a target gene. Finally, we show that vectors established for the model organism Haloferax volcanii are deployable for genetic manipulation of Hrr. lacusprofundi, allowing the use of the portfolio of genetic tools available for H. volcanii in Hrr. lacusprofundi.

6.
Biomolecules ; 13(1)2023 01 09.
Article in English | MEDLINE | ID: mdl-36671519

ABSTRACT

Tubulin superfamily (TSF) proteins are widespread, and are known for their multifaceted roles as cytoskeletal proteins underpinning many basic cellular functions, including morphogenesis, division, and motility. In eukaryotes, tubulin assembles into microtubules, a major component of the dynamic cytoskeletal network of fibres, whereas the bacterial homolog FtsZ assembles the division ring at midcell. The functions of the lesser-known archaeal TSF proteins are beginning to be identified and show surprising diversity, including homologs of tubulin and FtsZ as well as a third archaea-specific family, CetZ, implicated in the regulation of cell shape and possibly other unknown functions. In this study, we define sequence and structural characteristics of the CetZ family and CetZ1 and CetZ2 subfamilies, identify CetZ groups and diversity amongst archaea, and identify potential functional relationships through analysis of the genomic neighbourhoods of cetZ genes. We identified at least three subfamilies of orthologous CetZ proteins in the archaeal class Halobacteria, including CetZ1 and CetZ2 as well as a novel uncharacterized subfamily. CetZ1 and CetZ2 were correlated to one another as well as to cell shape and motility phenotypes across diverse Halobacteria. Among other known CetZ clusters in orders Archaeoglobales, Methanomicrobiales, Methanosarcinales, and Thermococcales, an additional uncharacterized group from Archaeoglobales and Methanomicrobiales is affiliated strongly with Halobacteria CetZs, suggesting that they originated via horizontal transfer. Subgroups of Halobacteria CetZ2 and Thermococcales CetZ genes were found adjacent to different type IV pili regulons, suggesting potential utilization of CetZs by type IV systems. More broadly conserved cetZ gene neighbourhoods include nucleotide and cofactor biosynthesis (e.g., F420) and predicted cell surface sugar epimerase genes. These findings imply that CetZ subfamilies are involved in multiple functions linked to the cell surface, biosynthesis, and motility.


Subject(s)
Archaeal Proteins , Cytoskeletal Proteins , Cytoskeletal Proteins/metabolism , Archaea/genetics , Archaea/metabolism , Tubulin/genetics , Tubulin/metabolism , Bacterial Proteins/metabolism , Bacteria/metabolism , Archaeal Proteins/metabolism
8.
Nat Commun ; 13(1): 3648, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35752634

ABSTRACT

During infection of bladder epithelial cells, uropathogenic Escherichia coli (UPEC) can stop dividing and grow into highly filamentous forms. Here, we find that some filaments of E. coli UTI89 released from infected cells grow very rapidly and by more than 100 µm before initiating division, whereas others do not survive, suggesting that infection-related filamentation (IRF) is a stress response that promotes bacterial dispersal. IRF is accompanied by unstable, dynamic repositioning of FtsZ division rings. In contrast, DamX, which is associated with normal cell division and is also essential for IRF, is distributed uniformly around the cell envelope during filamentation. When filaments initiate division to regenerate rod cells, DamX condenses into stable rings prior to division. The DamX rings maintain consistent thickness during constriction and remain at the septum until after membrane fusion. Deletion of damX affects vegetative cell division in UTI89 (but not in the model E. coli K-12), and, during infection, blocks filamentation and reduces bacterial cell integrity. IRF therefore involves DamX distribution throughout the membrane and prevention of FtsZ ring stabilization, leading to cell division arrest. DamX then reassembles into stable division rings for filament division, promoting dispersal and survival during infection.


Subject(s)
Bacterial Proteins/metabolism , Cytoskeletal Proteins/metabolism , Escherichia coli Proteins , Uropathogenic Escherichia coli , Bacterial Proteins/genetics , Cell Division , Cell Membrane/metabolism , Cytoskeleton/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Uropathogenic Escherichia coli/metabolism
9.
Viruses ; 13(8)2021 08 15.
Article in English | MEDLINE | ID: mdl-34452479

ABSTRACT

It has been shown that the filamentous phage, Pf4, plays an important role in biofilm development, stress tolerance, genetic variant formation and virulence in Pseudomonas aeruginosa PAO1. These behaviours are linked to the appearance of superinfective phage variants. Here, we have investigated the molecular mechanism of superinfection as well as how the Pf4 phage can control host gene expression to modulate host behaviours. Pf4 exists as a prophage in PAO1 and encodes a homologue of the P2 phage repressor C and was recently named Pf4r. Through a combination of molecular techniques, ChIPseq and transcriptomic analyses, we show a critical site in repressor C (Pf4r) where a mutation in the site, 788799A>G (Ser4Pro), causes Pf4r to lose its function as the immunity factor against reinfection by Pf4. X-ray crystal structure analysis shows that Pf4r forms symmetric homo-dimers homologous to the E.coli bacteriophage P2 RepC protein. A mutation, Pf4r*, associated with the superinfective Pf4r variant, found at the dimer interface, suggests dimer formation may be disrupted, which derepresses phage replication. This is supported by multi-angle light scattering (MALS) analysis, where the Pf4r* protein only forms monomers. The loss of dimerisation also explains the loss of Pf4r's immunity function. Phenotypic assays showed that Pf4r increased LasB activity and was also associated with a slight increase in the percentage of morphotypic variants. ChIPseq and transcriptomic analyses suggest that Pf4r also likely functions as a transcriptional regulator for other host genes. Collectively, these data suggest the mechanism by which filamentous phages play such an important role in P. aeruginosa biofilm development.


Subject(s)
Gene Expression Regulation , Host Microbial Interactions/genetics , Pseudomonas Phages/genetics , Pseudomonas aeruginosa/genetics , Repressor Proteins/genetics , Superinfection/genetics , Biofilms/growth & development , Gene Expression , Pseudomonas Infections , Pseudomonas Phages/metabolism , Pseudomonas aeruginosa/virology , Repressor Proteins/chemistry , Superinfection/virology , Virulence
10.
mBio ; 12(4): e0141621, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34253062

ABSTRACT

Transcriptional regulators that integrate cellular and environmental signals to control cell division are well known in bacteria and eukaryotes, but their existence is poorly understood in archaea. We identified a conserved gene (cdrS) that encodes a small protein and is highly transcribed in the model archaeon Haloferax volcanii. The cdrS gene could not be deleted, but CRISPR interference (CRISPRi)-mediated repression of the cdrS gene caused slow growth and cell division defects and changed the expression of multiple genes and their products associated with cell division, protein degradation, and metabolism. Consistent with this complex regulatory network, overexpression of cdrS inhibited cell division, whereas overexpression of the operon encoding both CdrS and a tubulin-like cell division protein (FtsZ2) stimulated division. Chromatin immunoprecipitation-DNA sequencing (ChIP-Seq) identified 18 DNA-binding sites of the CdrS protein, including one upstream of the promoter for a cell division gene, ftsZ1, and another upstream of the essential gene dacZ, encoding diadenylate cyclase involved in c-di-AMP signaling, which is implicated in the regulation of cell division. These findings suggest that CdrS is a transcription factor that plays a central role in a regulatory network coordinating metabolism and cell division. IMPORTANCE Cell division is a central mechanism of life and is essential for growth and development. Members of the Bacteria and Eukarya have different mechanisms for cell division, which have been studied in detail. In contrast, cell division in members of the Archaea is still understudied, and its regulation is poorly understood. Interestingly, different cell division machineries appear in members of the Archaea, with the Euryarchaeota using a cell division apparatus based on the tubulin-like cytoskeletal protein FtsZ, as in bacteria. Here, we identify the small protein CdrS as essential for survival and a central regulator of cell division in the euryarchaeon Haloferax volcanii. CdrS also appears to coordinate other cellular pathways, including synthesis of signaling molecules and protein degradation. Our results show that CdrS plays a sophisticated role in cell division, including regulation of numerous associated genes. These findings are expected to initiate investigations into conditional regulation of division in archaea.


Subject(s)
Cell Division/genetics , Gene Expression Regulation, Archaeal , Haloferax volcanii/genetics , Transcription Factors/genetics , Transcription, Genetic , Haloferax volcanii/physiology , Promoter Regions, Genetic , Protein Binding , Protein Transport , Signal Transduction , Transcription Factors/metabolism
11.
Res Microbiol ; 172(6): 103852, 2021.
Article in English | MEDLINE | ID: mdl-34246779

ABSTRACT

In contrast to mammalian cells, bacteria such as Escherichia coli have been shown to display tolerance towards the neurotoxin ß-methylamino-l-alanine (BMAA) suggesting that these prokaryotes possess a way to metabolise BMAA or its products, resulting in their export, degradation, or detoxification. Single gene deletion mutants of E. coli K-12 with inactivated amino acid biosynthesis pathways were treated with 500 µg/ml BMAA and the resulting growth was monitored. Wild type E. coli and most of the gene deletion mutants displayed unaltered growth in the presence of BMAA over 12 h. Conversely, deletion of genes in the cysteine biosynthesis pathway, cysE, cysK or cysM resulted in a BMAA dose-dependent growth delay in minimal medium. Through further studies of the ΔcysE strain, we observed increased susceptibility to oxidative stress from H2O2 in minimal medium, and disruptions in glutathione levels and oxidation state. The cysteine biosynthesis pathway is therefore linked to the tolerance of BMAA and oxidative stress in E. coli, which potentially represents a mechanism of BMAA detoxification.


Subject(s)
Amino Acids, Diamino/pharmacology , Cyanobacteria Toxins/pharmacology , Cysteine/biosynthesis , Escherichia coli/drug effects , Escherichia coli/metabolism , Amino Acids, Diamino/metabolism , Amino Acids, Diamino/toxicity , Culture Media , Cyanobacteria Toxins/metabolism , Cyanobacteria Toxins/toxicity , Cysteine Synthase/genetics , Drug Tolerance , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Gene Deletion , Glutathione/metabolism , Hydrogen Peroxide/pharmacology , Metabolic Networks and Pathways , Oxidation-Reduction , Oxidative Stress , Serine O-Acetyltransferase/genetics
12.
Nat Microbiol ; 6(5): 594-605, 2021 05.
Article in English | MEDLINE | ID: mdl-33903747

ABSTRACT

In bacteria, the tubulin homologue FtsZ assembles a cytokinetic ring, termed the Z ring, and plays a key role in the machinery that constricts to divide the cells. Many archaea encode two FtsZ proteins from distinct families, FtsZ1 and FtsZ2, with previously unclear functions. Here, we show that Haloferax volcanii cannot divide properly without either or both FtsZ proteins, but DNA replication continues and cells proliferate in alternative ways, such as blebbing and fragmentation, via remarkable envelope plasticity. FtsZ1 and FtsZ2 colocalize to form the dynamic division ring. However, FtsZ1 can assemble rings independent of FtsZ2, and stabilizes FtsZ2 in the ring, whereas FtsZ2 functions primarily in the constriction mechanism. FtsZ1 also influenced cell shape, suggesting it forms a hub-like platform at midcell for the assembly of shape-related systems too. Both FtsZ1 and FtsZ2 are widespread in archaea with a single S-layer envelope, but archaea with a pseudomurein wall and division septum only have FtsZ1. FtsZ1 is therefore likely to provide a fundamental recruitment role in diverse archaea, and FtsZ2 is required for constriction of a flexible S-layer envelope, where an internal constriction force might dominate the division mechanism, in contrast with the single-FtsZ bacteria and archaea that divide primarily by wall ingrowth.


Subject(s)
Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Cell Division , Haloferax volcanii/cytology , Haloferax volcanii/metabolism , Archaeal Proteins/genetics , Haloferax volcanii/chemistry , Haloferax volcanii/genetics , Protein Binding
13.
PLoS Pathog ; 17(4): e1009186, 2021 04.
Article in English | MEDLINE | ID: mdl-33826679

ABSTRACT

Pathogenic mycobacteria actively dysregulate protective host immune signalling pathways during infection to drive the formation of permissive granuloma microenvironments. Dynamic regulation of host microRNA (miRNA) expression is a conserved feature of mycobacterial infections across host-pathogen pairings. Here we examine the role of miR-206 in the zebrafish model of Mycobacterium marinum infection, which allows investigation of the early stages of granuloma formation. We find miR-206 is upregulated following infection by pathogenic M. marinum and that antagomir-mediated knockdown of miR-206 is protective against infection. We observed striking upregulation of cxcl12a and cxcr4b in infected miR-206 knockdown zebrafish embryos and live imaging revealed enhanced recruitment of neutrophils to sites of infection. We used CRISPR/Cas9-mediated knockdown of cxcl12a and cxcr4b expression and AMD3100 inhibition of Cxcr4 to show that the enhanced neutrophil response and reduced bacterial burden caused by miR-206 knockdown was dependent on the Cxcl12/Cxcr4 signalling axis. Together, our data illustrate a pathway through which pathogenic mycobacteria induce host miR-206 expression to suppress Cxcl12/Cxcr4 signalling and prevent protective neutrophil recruitment to granulomas.


Subject(s)
Chemokine CXCL12/metabolism , MicroRNAs/genetics , Neutrophil Infiltration/immunology , Receptors, CXCR4/metabolism , Animals , Chemokine CXCL12/immunology , Gene Knockdown Techniques/methods , Mycobacterium Infections, Nontuberculous/genetics , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium marinum/metabolism , Receptors, CXCR4/immunology , Signal Transduction/genetics , Signal Transduction/immunology , Zebrafish/immunology
14.
J Bacteriol ; 203(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-33722843

ABSTRACT

Rod-shaped bacteria such as Escherichia coli can regulate cell division in response to stress, leading to filamentation, a process where cell growth and DNA replication continues in the absence of division, resulting in elongated cells. The classic example of stress is DNA damage which results in the activation of the SOS response. While the inhibition of cell division during SOS has traditionally been attributed to SulA in E. coli, a previous report suggests that the e14 prophage may also encode an SOS-inducible cell division inhibitor, previously named SfiC. However, the exact gene responsible for this division inhibition has remained unknown for over 35 years. A recent high-throughput over-expression screen in E. coli identified the e14 prophage gene, ymfM, as a potential cell division inhibitor. In this study, we show that the inducible expression of ymfM from a plasmid causes filamentation. We show that this expression of ymfM results in the inhibition of Z ring formation and is independent of the well characterised inhibitors of FtsZ ring assembly in E. coli, SulA, SlmA and MinC. We confirm that ymfM is the gene responsible for the SfiC phenotype as it contributes to the filamentation observed during the SOS response. This function is independent of SulA, highlighting that multiple alternative division inhibition pathways exist during the SOS response. Our data also highlight that our current understanding of cell division regulation during the SOS response is incomplete and raises many questions regarding how many inhibitors there actually are and their purpose for the survival of the organism.Importance:Filamentation is an important biological mechanism which aids in the survival, pathogenesis and antibiotic resistance of bacteria within different environments, including pathogenic bacteria such as uropathogenic Escherichia coli Here we have identified a bacteriophage-encoded cell division inhibitor which contributes to the filamentation that occurs during the SOS response. Our work highlights that there are multiple pathways that inhibit cell division during stress. Identifying and characterising these pathways is a critical step in understanding survival tactics of bacteria which become important when combating the development of bacterial resistance to antibiotics and their pathogenicity.

15.
Microbiology (Reading) ; 167(2)2021 02.
Article in English | MEDLINE | ID: mdl-33459585

ABSTRACT

Some microbes display pleomorphism, showing variable cell shapes in a single culture, whereas others differentiate to adapt to changed environmental conditions. The pleomorphic archaeon Haloferax volcanii commonly forms discoid-shaped ('plate') cells in culture, but may also be present as rods, and can develop into motile rods in soft agar, or longer filaments in certain biofilms. Here we report improvement of H. volcanii growth in both semi-defined and complex media by supplementing with eight trace element micronutrients. With these supplemented media, transient development of plate cells into uniformly shaped rods was clearly observed during the early log phase of growth; cells then reverted to plates for the late log and stationary phases. In media prepared with high-purity water and reagents, without supplemental trace elements, rods and other complex elongated morphologies ('pleomorphic rods') were observed at all growth stages of the culture; the highly elongated cells sometimes displayed a substantial tubule at one or less frequently both poles, as well as unusual tapered and highly curved forms. Polar tubules were observed forming by initial mid-cell narrowing or tubulation, causing a dumbbell-like shape, followed by cell division towards one end. Formation of the uniform early log-phase rods, as well as the pleomorphic rods and tubules were dependent on the function of the tubulin-like cytoskeletal protein, CetZ1. Our results reveal the remarkable morphological plasticity of H. volcanii cells in response to multiple culture conditions, and should facilitate the use of this species in further studies of archaeal biology.


Subject(s)
Haloferax volcanii/cytology , Haloferax volcanii/growth & development , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Culture Media/chemistry , Cytoskeleton/genetics , Cytoskeleton/metabolism , Haloferax volcanii/metabolism , Nutrients/analysis , Trace Elements/analysis
16.
Front Microbiol ; 11: 583010, 2020.
Article in English | MEDLINE | ID: mdl-33329447

ABSTRACT

In recent years, fluorescence microscopy techniques for the localization and tracking of single molecules in living cells have become well-established and are indispensable tools for the investigation of cellular biology and in vivo biochemistry of many bacterial and eukaryotic organisms. Nevertheless, these techniques are still not established for imaging archaea. Their establishment as a standard tool for the study of archaea will be a decisive milestone for the exploration of this branch of life and its unique biology. Here, we have developed a reliable protocol for the study of the archaeon Haloferax volcanii. We have generated an autofluorescence-free H. volcanii strain, evaluated several fluorescent proteins for their suitability to serve as single-molecule fluorescence markers and codon-optimized them to work under optimal H. volcanii cultivation conditions. We found that two of them, Dendra2Hfx and PAmCherry1Hfx, provide state-of-the-art single-molecule imaging. Our strategy is quantitative and allows dual-color imaging of two targets in the same field of view (FOV) as well as DNA co-staining. We present the first single-molecule localization microscopy (SMLM) images of the subcellular organization and dynamics of two crucial intracellular proteins in living H. volcanii cells, FtsZ1, which shows complex structures in the cell division ring, and RNA polymerase, which localizes around the periphery of the cellular DNA. This work should provide incentive to develop SMLM strategies for other archaeal organisms in the near future.

17.
Curr Biol ; 30(24): 4956-4972.e4, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33125862

ABSTRACT

MinD proteins are well studied in rod-shaped bacteria such as E. coli, where they display self-organized pole-to-pole oscillations that are important for correct positioning of the Z-ring at mid-cell for cell division. Archaea also encode proteins belonging to the MinD family, but their functions are unknown. MinD homologous proteins were found to be widespread in Euryarchaeota and form a sister group to the bacterial MinD family, distinct from the ParA and other related ATPase families. We aimed to identify the function of four archaeal MinD proteins in the model archaeon Haloferax volcanii. Deletion of the minD genes did not cause cell division or size defects, and the Z-ring was still correctly positioned. Instead, one of the deletions (ΔminD4) reduced swimming motility and hampered the correct formation of motility machinery at the cell poles. In ΔminD4 cells, there is reduced formation of the motility structure and chemosensory arrays, which are essential for signal transduction. In bacteria, several members of the ParA family can position the motility structure and chemosensory arrays via binding to a landmark protein, and consequently these proteins do not oscillate along the cell axis. However, GFP-MinD4 displayed pole-to-pole oscillation and formed polar patches or foci in H. volcanii. The MinD4 membrane-targeting sequence (MTS), homologous to the bacterial MinD MTS, was essential for the oscillation. Surprisingly, mutant MinD4 proteins failed to form polar patches. Thus, MinD4 from H. volcanii combines traits of different bacterial ParA/MinD proteins.


Subject(s)
Archaeal Proteins/metabolism , Chemotaxis/physiology , Haloferax volcanii/physiology , Archaeal Proteins/genetics , Cell Membrane/metabolism , Intravital Microscopy , Time-Lapse Imaging
18.
Infect Immun ; 88(9)2020 08 19.
Article in English | MEDLINE | ID: mdl-32540870

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections. These bacteria undertake a multistage infection cycle involving invasion of and proliferation within urinary tract epithelial cells, leading to the rupture of the host cell and dispersal of the bacteria, some of which have a highly filamentous morphology. Here, we established a microfluidics-based model of UPEC infection of immortalized human bladder epithelial cells that recapitulates the main stages of bacterial morphological changes during the acute infection cycle in vivo and allows the development and fate of individual cells to be monitored in real time by fluorescence microscopy. The UPEC-infected bladder cells remained alive and mobile in nonconfluent monolayers during the development of intracellular bacterial communities (IBCs). Switching from a flow of growth medium to human urine resulted in immobilization of both uninfected and infected bladder cells. Some IBCs continued to develop and then released many highly filamentous bacteria via an extrusion-like process, whereas other IBCs showed strong UPEC proliferation, and yet no filamentation was detected. The filamentation response was dependent on the weak acidity of human urine and required component(s) in a low molecular-mass (<3,000 Da) fraction from a mildly dehydrated donor. The developmental fate for bacteria therefore appears to be controlled by multiple factors that act at the level of the whole IBC, suggesting that variable local environments or stochastic differentiation pathways influence IBC developmental fates during infection.


Subject(s)
Epithelial Cells/microbiology , Microfluidic Analytical Techniques , Uropathogenic Escherichia coli/pathogenicity , Uropathogenic Escherichia coli/ultrastructure , Cell Line, Transformed , Cell Movement , Cell Proliferation , Epithelial Cells/pathology , Epithelial Cells/ultrastructure , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Hydrogen-Ion Concentration , Microscopy, Fluorescence , Models, Biological , Rheology , Urinary Bladder/microbiology , Urinary Bladder/pathology , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Uropathogenic Escherichia coli/physiology , Urothelium/microbiology , Urothelium/pathology
19.
Sci Rep ; 10(1): 6745, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317661

ABSTRACT

Characterisation of protein function based solely on homology searches may overlook functions under specific environmental conditions, or the possibility of a protein having multiple roles. In this study we investigated the role of YtfB, a protein originally identified in a genome-wide screen to cause inhibition of cell division, and has demonstrated to localise to the Escherichia coli division site with some degree of glycan specificity. Interestingly, YtfB also shows homology to the virulence factor OapA from Haemophilus influenzae, which is important for adherence to epithelial cells, indicating the potential of additional function(s) for YtfB. Here we show that E. coli YtfB binds to N'acetylglucosamine and mannobiose glycans with high affinity. The loss of ytfB results in a reduction in the ability of the uropathogenic E. coli strain UTI89 to adhere to human kidney cells, but not to bladder cells, suggesting a specific role in the initial adherence stage of ascending urinary tract infections. Taken together, our results suggest a role for YtfB in adhesion to specific eukaryotic cells, which may be additional, or complementary, to its role in cell division. This study highlights the importance of understanding the possible multiple functions of proteins based on homology, which may be specific to different environmental conditions.


Subject(s)
Bacterial Adhesion/genetics , Cell Cycle Proteins/genetics , Cell Division/genetics , Escherichia coli Proteins/genetics , Uropathogenic Escherichia coli/genetics , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Carbohydrate Sequence , Cell Adhesion , Cell Cycle Proteins/deficiency , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Gene Expression , HEK293 Cells , Haemophilus influenzae/chemistry , Haemophilus influenzae/metabolism , Humans , Mannans/chemistry , Mannans/metabolism , Phylogeny , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Binding , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Uropathogenic Escherichia coli/classification , Uropathogenic Escherichia coli/cytology , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/genetics , Virulence Factors/metabolism
20.
Methods Mol Biol ; 1998: 1-11, 2019.
Article in English | MEDLINE | ID: mdl-31250290

ABSTRACT

Members of the archaeal domain of life that lack homologs of actin and tubulin divide by binary fission in a process that is dependent upon orthologs of eukaryotic ESCRT components. Many of these archaeal organisms are hyperthermophilic acidophiles with unique cell wall structures, which create technical challenges for performing traditional cell biological techniques. Here, we describe the "baby machine" method for synchronizing microorganisms at high temperatures in order to study cell cycle-related processes. We also provide details for fixing, permeabilizing, and staining archaeal cells and ESCRT assemblies for observation by light microscopy.


Subject(s)
Archaeal Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Sulfolobus acidocaldarius/metabolism , Cell Cycle , Microscopy, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...