Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(3): 034002, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37540883

ABSTRACT

Viscous flows through pipes and channels are steady and ordered until, with increasing velocity, the laminar motion catastrophically breaks down and gives way to turbulence. How this apparently discontinuous change from low- to high-dimensional motion can be rationalized within the framework of the Navier-Stokes equations is not well understood. Exploiting geometrical properties of transitional channel flow we trace turbulence to far lower Reynolds numbers (Re) than previously possible and identify the complete path that reversibly links fully turbulent motion to an invariant solution. This precursor of turbulence destabilizes rapidly with Re, and the accompanying explosive increase in attractor dimension effectively marks the transition between deterministic and de facto stochastic dynamics.

2.
Phys Rev Lett ; 129(24): 244501, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36563243

ABSTRACT

Laminar-turbulent pattern formation is a distinctive feature of the intermittency regime in subcritical plane shear flows. By performing extensive numerical simulations of the plane channel flow, we show that the pattern emerges from a spatial modulation of the turbulent flow, due to a linear instability. We sample over many realizations the linear response of the fluctuating turbulent field to a temporal impulse, in the regime where the turbulent flow is stable, just before the onset of the instability. The dispersion relation is constructed from the ensemble-averaged relaxation rates. As the instability threshold is approached, the relaxation rate of the least damped modes eventually reaches zero. The method allows, despite the presence of turbulent fluctuations and without any closure model, for an accurate estimation of the wave vector of the modulation at onset.

3.
Entropy (Basel) ; 23(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652613

ABSTRACT

The study of the transition from a laminar to a turbulent flow is as old as the study of turbulence itself [...].

4.
Phys Rev E ; 102(5-1): 053108, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33327071

ABSTRACT

The transition to turbulence in many shear flows proceeds along two competing routes, one linked with finite-amplitude disturbances and the other one originating from a linear instability, as in, e.g., boundary layer flows. The dynamical systems concept of an edge manifold has been suggested in the subcritical case to explain the partition of the state space of the system. This investigation is devoted to the evolution of the edge manifold when linear stability is added in such subcritical systems, a situation poorly studied despite its prevalence in realistic fluid flows. In particular, the fate of the edge state as a mediator of transition is unclear. A deterministic three-dimensional model is suggested, parametrized by the linear instability growth rate. The edge manifold evolves topologically, via a global saddle-loop bifurcation of the underlying invariant sets, from the separatrix between two attraction basins to the mediator between two transition routes. For larger instability rates, the stable manifold of the saddle point increases in codimension from 1 to 2 after an additional local pitchfork node bifurcation, causing the collapse of the edge manifold. As the growth rate is increased, three different regimes of this model are identified, each one associated with a flow case from the recent hydrodynamic literature. A simple nonautonomous generalization of the model is also suggested in order to capture the complexity of spatially developing flows.

5.
Entropy (Basel) ; 22(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-33286757

ABSTRACT

The onset of turbulence in subcritical shear flows is one of the most puzzling manifestations of critical phenomena in fluid dynamics. The present study focuses on the Couette flow inside an infinitely long annular geometry where the inner rod moves with constant velocity and entrains fluid, by means of direct numerical simulation. Although for a radius ratio close to unity the system is similar to plane Couette flow, a qualitatively novel regime is identified for small radius ratio, featuring no oblique bands. An analysis of finite-size effects is carried out based on an artificial increase of the perimeter. Statistics of the turbulent fraction and of the laminar gap distributions are shown both with and without such confinement effects. For the wider domains, they display a cross-over from exponential to algebraic scaling. The data suggest that the onset of the original regime is consistent with the dynamics of one-dimensional directed percolation at onset, yet with additional frustration due to azimuthal confinement effects.

6.
Entropy (Basel) ; 22(9)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-33286770

ABSTRACT

The transitional regime of plane channel flow is investigated above the transitional point below which turbulence is not sustained, using direct numerical simulation in large domains. Statistics of laminar-turbulent spatio-temporal intermittency are reported. The geometry of the pattern is first characterized, including statistics for the angles of the laminar-turbulent stripes observed in this regime, with a comparison to experiments. High-order statistics of the local and instantaneous bulk velocity, wall shear stress and turbulent kinetic energy are then provided. The distributions of the two former quantities have non-trivial shapes, characterized by a large kurtosis and/or skewness. Interestingly, we observe a strong linear correlation between their kurtosis and their skewness squared, which is usually reported at much higher Reynolds number in the fully turbulent regime.

7.
Chaos ; 29(12): 121103, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31893672

ABSTRACT

Synchronization of a large ensemble of identical phase oscillators with a nonlocal kernel and a phase lag parameter α is investigated for the classical Kuramoto-Sakaguchi model on a ring. We demonstrate, for low enough coupling radius r and α below π/2, a phase transition between coherence and phase turbulence via so-called defect states, which arise at the early stage of the transition. The defect states are a novel object resulting from the concatenation of two or more uniformly twisted waves with different wavenumbers. Upon further increase of α, defects lose their stability and give rise to spatiotemporal intermittency, resulting eventually in developed phase turbulence. Simulations close to the thermodynamic limit indicate that this phase transition is characterized by nonuniversal critical exponents.

8.
Article in English | MEDLINE | ID: mdl-26565345

ABSTRACT

The complete cascade of bifurcations from steady to chaotic convection, as the Rayleigh number is varied, is considered numerically inside an air-filled differentially heated cavity. The system is assumed to be two-dimensional and is invariant under a generalized reflection about the center of the cavity. In the neighborhood of several codimension-two points, two main routes emerge, characterized by different symmetries of the first oscillatory eigenstate. Along these two competing routes, different sequences of bifurcations and symmetry breakings lead from the steady base flow to the hyperchaotic regime. Several families of two- and three-frequency tori have been identified via the computation of the leading Lyapunov exponents. Modal structures extracted from time series reveal the occurrence of slow internal oscillations in the center of the cavity and faster wall modes confined to vertical boundary layers. Further quasiperiodicity windows have been detected on each route. The different regimes eventually disappear in a boundary crisis in favor of a single, globally symmetric, hyperchaotic regime.

9.
Eur Phys J E Soft Matter ; 37(4): 32, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24771243

ABSTRACT

We study numerically transitional coherent structures in a boundary-layer flow with homogeneous suction at the wall (the so-called asymptotic suction boundary layer ASBL). The dynamics restricted to the laminar-turbulent separatrix is investigated in a spanwise-extended domain that allows for robust localisation of all edge states. We work at fixed Reynolds number and study the edge states as a function of the streamwise period. We demonstrate the complex spatio-temporal dynamics of these localised states, which exhibits multistability and undergoes complex bifurcations leading from periodic to chaotic regimes. It is argued that in all regimes the dynamics restricted to the edge is essentially low-dimensional and non-extensive.

10.
Phys Rev Lett ; 112(14): 144502, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24765972

ABSTRACT

Large-scale instabilities occurring in the presence of small-scale turbulent fluctuations are frequently observed in geophysical or astrophysical contexts but are difficult to reproduce in the laboratory. Using extensive numerical simulations, we report here on intense recurrent bursts of turbulence in plane Poiseuille flow rotating about a spanwise axis. A simple model based on the linear instability of the mean flow can predict the structure and time scale of the nearly periodic and self-sustained burst cycles. Poiseuille flow is suggested as a prototype for future studies of low-dimensional dynamics embedded in strongly turbulent environments.

11.
Phys Rev Lett ; 110(3): 034502, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23373928

ABSTRACT

Localized structures such as turbulent stripes and turbulent spots are typical features of transitional wall-bounded flows in the subcritical regime. Based on an assumption for scale separation between large and small scales, we show analytically that the corresponding laminar-turbulent interfaces are always oblique with respect to the mean direction of the flow. In the case of plane Couette flow, the mismatch between the streamwise flow rates near the boundaries of the turbulence patch generates a large-scale flow with a nonzero spanwise component. Advection of the small-scale turbulent fluctuations (streaks) by the corresponding large-scale flow distorts the shape of the turbulence patch and is responsible for its oblique growth. This mechanism can be easily extended to other subcritical flows such as plane Poiseuille flow or Taylor-Couette flow.

12.
Phys Rev Lett ; 108(4): 044501, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22400847

ABSTRACT

When a boundary layer starts to develop spatially over a flat plate, only disturbances of sufficiently large amplitude survive and trigger turbulence subcritically. Direct numerical simulation of the Blasius boundary-layer flow is carried out to track the dynamics in the region of phase space separating transitional from relaminarizing trajectories. In this intermediate regime, the corresponding disturbance is fully localized and spreads slowly in space. This structure is dominated by a robust pair of low-speed streaks, whose convective instabilities spawn hairpin vortices evolving downstream into transient disturbances. A quasicyclic mechanism for the generation of offspring is unfolded using dynamical rescaling with the local boundary-layer thickness.


Subject(s)
Models, Theoretical , Computer Simulation , Surface Properties
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(6 Pt 2): 066315, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22304198

ABSTRACT

We investigate numerically the dynamics of a laminar-turbulent interface in a spanwisely extended and streamwisely minimal plane Couette flow. The chosen geometry allows one to suppress the large-scale secondary flow and to focus on the nucleation of streaks near the interface. It is shown that the resulting spanwise motion of the interface is essentially stochastic and can be modeled as a continuous-time random walk. This model corresponds here to a Gaussian diffusion process. The average speed of the interface and the corresponding diffusion coefficient are determined as functions of the Reynolds number Re, as well as the threshold value above which turbulence contaminates the whole domain. For the lowest values of Re, the stochastic dynamics competes with another deterministic regime of growth of the localized perturbations. The latter is interpreted as a depinning process from the homoclinic snaking region of the system.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(2 Pt 2): 026316, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20866914

ABSTRACT

For parallel shear flows, transition to turbulence occurs only for perturbations of sufficiently large amplitude. It is therefore relevant to study the shape, amplitude, and dynamics of the least energetic initial disturbances leading to transition. We suggest a numerical approach to find such minimal perturbations, applied here to the case of plane Couette flow. The optimization method seeks such perturbations at initial time as a linear combination of a finite number of linear optimal modes. The energy threshold of the minimal perturbation for a Reynolds number Re=400 is only 2% less than for a pair of symmetric oblique waves. The associated transition scenario shows a long transient approach to a steady state solution with special symmetries. Modal analysis shows how the oblique-wave mechanism can be optimized by the addition of other oblique modes breaking the flow symmetry and whose nonlinear interaction generates spectral components of the edge state. The Re dependence of energy thresholds is revisited, with evidence for a O(Re(-2)) -scaling for both oblique waves and streamwise vortices scenarios.

15.
Philos Trans A Math Phys Eng Sci ; 367(1888): 457-72, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19000971

ABSTRACT

The recent theoretical discovery of finite-amplitude travelling waves (TWs) in pipe flow has reignited interest in the transitional phenomena that Osborne Reynolds studied 125 years ago. Despite all being unstable, these waves are providing fresh insight into the flow dynamics. We describe two new classes of TWs, which, while possessing more restrictive symmetries than previously found TWs of Faisst & Eckhardt (2003 Phys. Rev. Lett. 91, 224502) and Wedin & Kerswell (2004 J. Fluid Mech. 508, 333-371), seem to be more fundamental to the hierarchy of exact solutions. They exhibit much higher wall shear stresses and appear at notably lower Reynolds numbers. The first M-class comprises the various discrete rotationally symmetric analogues of the mirror-symmetric wave found in Pringle & Kerswell (2007 Phys. Rev. Lett. 99, 074502), and have a distinctive double-layered structure of fast and slow streaks across the pipe radius. The second N-class has the more familiar separation of fast streaks to the exterior and slow streaks to the interior and looks like the precursor to the class of non-mirror-symmetric waves already known.


Subject(s)
Models, Theoretical , Blood Flow Velocity
SELECTION OF CITATIONS
SEARCH DETAIL
...