Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
ChemSusChem ; : e202401497, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39380542

ABSTRACT

The catalytic functionalization of CO2 into high-value compounds comprises a promising approach to mitigate its atmospheric content and sustainable generation of fine chemicals. Herein, we report application of a crystalline, nano-porous 2D COF (ET-BP-COF) for utilization of CO2. The ET-BP-COF features a unique 2D kagome (kgm) topology composed of hexagonal and triangular 1D channels decorated with bipyridine sites, which were exploited for covalent anchoring of eco-friendly Cu(I) by post-synthetic method. The Cu(I) engrafted COF was applied as a recyclable catalyst for coupling CO2 with alkynes to generate two high-value compounds, α-alkylidene cyclic carbonates (α-ACCs) and 2-oxazolidinones. Notably, Cu(I)@ET-BP-COF demonstrated excellent catalytic performance for transforming propargylic amine and CO2 to 2-oxazolidinone, an essential building block for antibiotics. Besides, an efficient transformation of propargylic alcohols to generate α-ACCs, valuable commodity chemicals, has been achieved by utilizing carbon dioxide. Further, detailed theoretical simulations disclosed the insight mechanistic path of Cu(I) catalyzed coupling of CO2 with alkynes to produce 2-oxazolidinones and α-ACCs. Significantly, Cu(I)@COF was reusable for multiple cycles without losing framework rigidity and catalytic performance. This study showcases the potential application of ET-BP-COF for stable anchoring of eco-friendly metals as catalytic sites for effective utilization of CO2 to produce two high-value products.

2.
Phys Chem Chem Phys ; 26(14): 11140-11149, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38530754

ABSTRACT

In recent years, hydrogen (H2) has become the most sought-after sustainable energy carrier by virtue of its high energy content and carbon-free emission. The practical implementation of hydrogen as an alternative fuel calls for an efficient and secure storage medium. Within this framework, we have investigated Li-grafted Si-doped γ-graphyne for H2 storage applications by implementing the cutting-edge density functional theory (DFT). A dynamically and thermally stable Si-doped γ-graphyne (SiG) monolayer is functionalized with Li metal atoms that augmented the hydrogen binding strength of the nanolayer by almost three times, owing to the polarization effect of the Li atoms. The Li metal atoms get adsorbed over the monolayer, allowing a binding energy of -2.73 eV that is greater than the Li cohesive energy (-1.63 eV), which eliminates the metal-metal clustering probability. The reliability of the Li-functionalized SiG monolayer (Li8SiG) at elevated temperature has been further substantiated by performing and analyzing ab initio molecular dynamics (AIMD) simulations at 400 K. It is noteworthy that a total of four H2 molecules are held up by each Li atom with an average adsorption energy of -0.32 eV and a maximum gravimetric capacity of 8.48 wt%, which remarkably follows the US-DOE parameters. Partial density of states and Hirshfeld charge analysis are utilized to recognize the interaction channel which reveals the Kubas and Niu-Rao-Jena-like bonding among the metal atoms and loaded hydrogen molecules. The hydrogen occupancy calculated at different temperatures and pressures indicates that hydrogen molecules can be reversibly stored over the Li8SiG system, and it is noted that adsorbed H2 begins to desorb at 280 K, with complete desorption at 400 K and 20 atm (or lower). AIMD simulations are further performed to authenticate the H2 desorption at various temperatures, which agrees well with the occupation number analysis. All the outcomes advocate for efficient reversible hydrogen storage over the proposed host material.

3.
ACS Appl Mater Interfaces ; 16(5): 5857-5868, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38259199

ABSTRACT

The selective carbon capture and utilization (CCU) as a one-carbon (C1) feedstock offers dual advantages for mitigating the rising atmospheric CO2 content and producing fine chemicals/fuels. In this context, herein, we report the application of a porous bipyridine-functionalized, pyrene-based covalent organic framework (Pybpy-COF) for the stable anchoring of catalytic Ag(0) nanoparticles (NPs) and its catalytic investigation for fixation of CO2 to commodity chemicals at ambient conditions. Notably, Ag@Pybpy-COF showed excellent catalytic activity for the carboxylation of various terminal alkynes to corresponding alkynyl carboxylic acids/phenylpropiolic acids via C-H bond activation under atmospheric pressure conditions. Besides, carboxylative cyclization of various propargylic amines with CO2 to generate 2-oxazolidinones, an important class of antibiotics, has also been achieved under mild conditions. This significant catalytic activity of Ag@Pybpy-COF with wide functional group tolerance is rendered by the presence of highly exposed, alkynophilic Ag(0) catalytic sites decorated on the pore walls of high surface area (787 m2 g-1) Pybpy-COF. Further, density functional theory calculations unveiled the detailed mechanistic path of the Ag@Pybpy-COF-catalyzed transformation of CO2 to alkynyl carboxylic acids and 2-oxazolidinones. Moreover, the catalyst showed high recyclability for several cycles of reuse without significant loss in its catalytic activity and structural rigidity. This work demonstrates the promising application of Pybpy-COF for stable anchoring of Ag NPs for successful transformation of CO2 to valuable commodity chemicals at ambient conditions.

4.
Phys Chem Chem Phys ; 24(34): 20274-20281, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35975638

ABSTRACT

Li-ion batteries are one of the sustainable alternatives to meet the growing energy demands of an increasing population. However, finding a suitable negative electrode is key for improving battery performance. In the present work, first principles-based investigations are carried out to explore the capability of a planar 2D C-silicyne nanosheet - which is a Si analogue of α-graphyne having -CC- substitution - as an anode for improving the performance of Li-ion batteries. Thermally and dynamically stable C-silicyne sheets exhibit a metallic nature as inferred from the density of states studies. The average adsorption energies for sequential adsorption of the Li atom over the monolayer range from -1.35 to -0.46 eV, implying favourable interactions between the monolayer and the Li atom which indicate that during the lithiation process, clustering amongst the metal atoms is not preferred. The energy barrier for the migration of Li-ions is 0.21 eV, indicating an active charge/discharge process. A high storage capacity of 836.07 mA h g-1 and a working potential of 0.60 V is obtained. A negligible amount of volume change of the C-silicyne monolayer after full lithiation is observed which implies good cyclability. All these outcomes imply that C-silicyne nanosheets are a potential anode material for next-generation LIBs.

SELECTION OF CITATIONS
SEARCH DETAIL