Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Article in English | MEDLINE | ID: mdl-35270805

ABSTRACT

Polycystic ovary syndrome (PCOS) is regarded as one of the most frequently encountered endocrine disorders and affects millions of young women worldwide, resulting in an array of complex metabolic alterations and reproductive failure. PCOS is a risk factor for diabetes mellitus, obstructive sleep apnea, obesity and depression in patients. Estrogen receptors (ESRs) are significant candidates in endocrine function and ovarian response in women. Moreover, microRNAs and long non-coding RNAs are emerging as principal mediators of gene expression and epigenetic pathways in various disease states. This study has characterized the clinical parameters in PCOS patients with comprehensive biochemical profiling compared to healthy controls and further examined the influence of allelic variations for estrogen receptor-α (ESR1 PvuII-rs2234693 T>C) and miRNA-146a (rs2910164 C>G) gene polymorphism on the risk of and susceptibility to PCOS. In this case-control study, we have used amplification refractory mutation specific (ARMS)-PCR to detect and determine the presence of these polymorphic variants in the study subjects. Our results demonstrated that most of the biochemical markers, which were analyzed in the study, show statistically significant alterations in PCOS patients, including fasting glucose, free insulin, HOMA-IR, LDL, HDL, cholesterol and hormones such as FSH, LH, testosterone and progesterone, which correlate with the established biochemical alterations in the disorder. Further, it is reported that for estrogen receptor-α (ESR1 PvuII-rs2234693 T>C), the frequency of the T allele (fT) was significantly higher among patients (0.64 vs. 0.44) compared to controls, while the frequency of the C allele (fC) was lower in patients (0.36 vs. 0.56) compared to controls. However, it was found that there was no association of an increased risk of PCOS with the ESR1 PvuII-rs2234693 C>T gene polymorphism. On the contrary, the study found strong association of miRNA-146a (rs2910164 C>G) gene polymorphism with an enhanced risk of PCOS. The frequency of the C allele (fC) was significantly higher among patients (0.52 vs. 0.36) compared to controls. The frequency of the G allele (fG) was found to be lower in patients (0.48 vs. 0.64) compared to controls. The codominant, dominant and recessive models display a statistically significant association of polymorphic variations with PCOS. Moreover, the G allele was associated strongly with PCOS susceptibility with an OR = 1.92 (95%) CI = (1.300−2.859), RR = 1.38 (1.130−1.691) p-value < 0.001.


Subject(s)
Estrogen Receptor alpha/genetics , MicroRNAs , Polycystic Ovary Syndrome , Case-Control Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , MicroRNAs/genetics , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Polymorphism, Single Nucleotide , Receptors, Estrogen
2.
Curr Issues Mol Biol ; 43(3): 1859-1875, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34889890

ABSTRACT

Type 2 DM (T2D) results from the interaction of the genetic and environmental risk factors. Vascular endothelial growth factor (VEGF), angiotensin I-converting enzyme (ACE), and MicroRNAs (MiRNAs) are involved in important physiological processes. Gene variations in VEGF, ACE and MiRNA genes are associated with diseases. In this study we investigated the associations of the VEGF-2578 C/A (rs699947), VEGF-2549 insertion/deletion (I/D), and ACE I/D rs4646994 and Mir128a (rs11888095) gene variations with T2D using the amplification refractory mutation system PCR (ARMS-PCR) and mutation specific PCR (MSP). We screened 122 T2D cases and 126 healthy controls (HCs) for the rs699947, and 133 T2D cases and 133 HCs for the VEGF I/D polymorphism. For the ACE I/D we screened 152 cases and 150 HCs, and we screened 129 cases and 112 HCs for the Mir128a (rs11888095). The results showed that the CA genotype of the VEGF rs699947 and D allele of the VEGF I/D polymorphisms were associated with T2D with OR =2.01, p-value = 0.011, and OR = 2.42, p-value = 0.010, respectively. The result indicated the D allele of the ACE ID was protective against T2D with OR = 0.10, p-value = 0.0001, whereas the TC genotype and the T allele of the Mir128a (rs11888095) were associated with increased risk to T2D with OR = 3.16, p-value = 0.0001, and OR = 1.68, p-value = 0.01, respectively. We conclude that the VEGF (rs699947), VEGF I/D and Mir128a (rs11888095) are potential risk loci for T2D, and that the D allele of the ACE ID polymorphism may be protective against T2D. These results help in identification and stratification for the individuals that at risk for T2D. However, future well-designed studies in different populations and with larger sample sizes are required. Moreover, studies to examine the effects of these polymorphisms on VEGF and ACE proteins are recommended.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genetic Variation , MicroRNAs/genetics , Peptidyl-Dipeptidase A/genetics , Vascular Endothelial Growth Factors/genetics , Alleles , Diabetes Mellitus, Type 2/metabolism , Genetic Association Studies , Genotype , Humans , Polymorphism, Single Nucleotide
3.
J Pers Med ; 11(9)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34575638

ABSTRACT

Type 2 diabetes is a metabolic disease characterized by elevated blood sugar. It has serious complications and socioeconomic impact. The MicroRNAs are short single-stranded and non-coding RNA molecules. They regulate gene expression at the post-transcriptional levels. They are important for many physiological processes including metabolism, growth, and others. The phosphoinositide 3-kinase (PI3K) is important for insulin signaling and glucose uptake. The genome wide association studies have identified the association of certain loci with diseases including T2D. In this study we have examined the association of miR126 rs4636297 and Phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) gene Variations rs7713645, rs706713 (Tyr73Tyr), and rs3730089 (Met326Ile) with T2D using the amplification refractory mutation system PCR. Results indicated that there was a significant different (p-value < 0.05) in the Mir126 rs4636297 genotypes distribution between cases and controls, and the minor allele of the rs4636297 was also associated with T2D with OR = 0.58, p-value < 0.05. In addition results showed that there were significant differences (p-value < 0.05) of rs4636297 genotype distribution of patients with normal and patient with abnormal lipid profile. Results also showed that the PIK3R1 rs7713645 and rs3730089 genotype distribution was significantly different between cases and controls with a p-values < 0.05. In addition, the minor allele of the rs7713645 and rs3730089 were associated with T2D with OR = 0.58, p-value < 0.05. We conclude that the Mir126 rs4636297 and PIK3R1 SNPs (rs7713645 and rs3730089) were associated with T2D. These results need verification in future studies with larger sample sizes and in different populations. Protein-protein interaction and enzyme assay studies are also required to uncover the effect of the SNPs on the PI3K regulatory subunit (PI3KR1) and PI3K catalytic activity.

4.
Asian Pac J Cancer Prev ; 19(8): 2057-2070, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30139042

ABSTRACT

Cytochromes P450s (CYPs) constitute a superfamily of enzymes that catalyze the metabolism of drugs and other substances. Endogenous substrates of CYPs include eicosanoids, estradiol, arachidonic acids, cholesterol, vitamin D and neurotransmitters. Exogenous substrates of CYPs include the polycyclic aromatic hydrocarbons and about 80% of currently used drugs. Some isoforms can activate procarcinogens to ultimate carcinogens. Genetic polymorphisms of CYPs may affect the enzyme catalytic activity and have been reported among different populations to be associated with various diseases and adverse drug reactions. With regard of drug metabolism, phenotypes for CYP polymorphism range from ultrarapid to poor metabolizers. In this review, we discuss some of the most clinically important CYPs isoforms (CYP2D6, CYP2A6, CYP2C19, CYP2C9, CYP1B1 and CYP1A2) with respect to gene polymorphisms and drug metabolism. Moreover, we review the role of CYPs in renal, lung, breast and prostate cancers and also discuss their significance for atherosclerosis and type 2 diabetes mellitus.


Subject(s)
Atherosclerosis/pathology , Cytochrome P-450 Enzyme System/genetics , Diabetes Mellitus/pathology , Neoplasms/pathology , Pharmaceutical Preparations/metabolism , Pharmacogenetics , Polymorphism, Genetic , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Diabetes Mellitus/drug therapy , Diabetes Mellitus/genetics , Genetic Predisposition to Disease , Humans , Neoplasms/drug therapy , Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...