Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Mammal ; 104(6): 1191-1204, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38059006

ABSTRACT

Animals with large energy requirements are forced to optimize their hunting strategy, which may result in differentiation of the diet between sexes and across seasons. Here, we examined spatiotemporal variation in the diet of both sexes of the Pond Bat Myotis dasycneme, a species known to have spatial segregation of sexes when the young are born and lactating. Fecal pellets were collected from live animals for a period of 15 years at various locations in the Netherlands. A total of 535 pellets were successfully analyzed by microscopy and an additional 160 pellets by DNA metabarcoding. Morphological and molecular analyses showed that the diet of pregnant and lactating pond bats differed significantly from the diet of females with no reproductive investment. Further analyses of the data showed that pregnant female pond bats are highly dependent on small prey and pupae, mainly nonbiting midges and mosquitoes (Diptera: Chironomidae and Culicidae). These insects can be found in large quantities in peatlands intersected with shallow waterways, the habitat type in which female pond bats were observed more often than males. Our results suggest that during pregnancy the spatial segregation of sexes coincides with sex-specific diets, which might reflect habitat selection based on energy requirements, in addition to lowered intraspecific competition.

2.
Am J Bot ; 110(10): e16229, 2023 10.
Article in English | MEDLINE | ID: mdl-37661805

ABSTRACT

PREMISE: The Amazonian hyperdominant genus Eperua (Fabaceae) currently holds 20 described species and has two strongly different inflorescence and flower types, with corresponding different pollination syndrome. The evolution of these vastly different inflorescence types within this genus was unknown and the main topic in this study. METHODS: We constructed a molecular phylogeny, based on the full nuclear ribosomal DNA and partial plastome, using Bayesian inference and maximum likelihood methods, to test whether the genus is monophyletic, whether all species are monophyletic and if the shift from bat to bee pollination (or vice versa) occurred once in this genus. RESULTS: All but two species are well supported by the nuclear ribosomal phylogeny. The plastome phylogeny, however, shows a strong geographic signal suggesting strong local hybridization or chloroplast capture, rendering chloroplast barcodes meaningless in this genus. CONCLUSIONS: With our data, we cannot fully resolve the backbone of the tree to clarify sister genera relationships and confirm monophyly of the genus Eperua. Within the genus, the shift from bat to bee and bee to bat pollination has occurred several times but, with the bee to bat not always leading to a pendant inflorescence.


Subject(s)
Chiroptera , Fabaceae , Bees/genetics , Animals , Phylogeny , Inflorescence/genetics , Bayes Theorem , Sequence Analysis, DNA , Evolution, Molecular
3.
Sci Rep ; 11(1): 22165, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34772985

ABSTRACT

Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in many marine environments and play a major role in global carbon cycling. Species recognition in Foraminifera is mainly based on morphological characters and nuclear 18S ribosomal RNA barcoding. The 18S rRNA contains variable sequence regions that allow for the identification of most foraminiferal species. Still, some species show limited variability, while others contain high levels of intragenomic polymorphisms, thereby complicating species identification. The use of additional, easily obtainable molecular markers other than 18S rRNA will enable more detailed investigation of evolutionary history, population genetics and speciation in Foraminifera. Here we present the first mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences ("barcodes") of Foraminifera. We applied shotgun sequencing to single foraminiferal specimens, assembled COI, and developed primers that allow amplification of COI in a wide range of foraminiferal species. We obtained COI sequences of 49 specimens from 17 species from the orders Rotaliida and Miliolida. Phylogenetic analysis showed that the COI tree is largely congruent with previously published 18S rRNA phylogenies. Furthermore, species delimitation with ASAP and ABGD algorithms showed that foraminiferal species can be identified based on COI barcodes.


Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV/genetics , Foraminifera/classification , Foraminifera/genetics , Genes, Mitochondrial , Computational Biology/methods , Gene Library , Genes, rRNA , High-Throughput Nucleotide Sequencing , Phylogeny , RNA, Ribosomal, 18S/genetics
4.
Mitochondrial DNA B Resour ; 6(11): 3196-3198, 2021.
Article in English | MEDLINE | ID: mdl-34660901

ABSTRACT

The hydrozoan species Nemalecium lighti (Hargitt, 1924) is widely distributed in tropical marine waters around the world. Here we report the complete linear mitochondrial genome of N. lighti from Sint Eustatius (Lesser Antilles). The mitochondrial genome with a length of 14,320 bp encodes for 13 protein-coding genes, two tRNA genes, and two rRNA genes. Gene arrangement differs from that found in other species of the same taxonomic order and a phylogenetic analysis shows that based on mitochondrial genes, N. lighti clusters outside of the Leptothecata, rendering the order paraphyletic.

5.
R Soc Open Sci ; 8(8): 202265, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34386247

ABSTRACT

The atlantid heteropods represent the only predatory, aragonite shelled zooplankton. Atlantid shell production is likely to be sensitive to ocean acidification (OA), and yet we know little about their mechanisms of calcification, or their response to changing ocean chemistry. Here, we present the first study into calcification and gene expression effects of short-term OA exposure on juvenile atlantids across three pH scenarios: mid-1960s, ambient and 2050 conditions. Calcification and gene expression indicate a distinct response to each treatment. Shell extension and shell volume were reduced from the mid-1960s to ambient conditions, suggesting that calcification is already limited in today's South Atlantic. However, shell extension increased from ambient to 2050 conditions. Genes involved in protein synthesis were consistently upregulated, whereas genes involved in organismal development were downregulated with decreasing pH. Biomineralization genes were upregulated in the mid-1960s and 2050 conditions, suggesting that any deviation from ambient carbonate chemistry causes stress, resulting in rapid shell growth. We conclude that atlantid calcification is likely to be negatively affected by future OA. However, we also found that plentiful food increased shell extension and shell thickness, and so synergistic factors are likely to impact the resilience of atlantids in an acidifying ocean.

6.
Ecology ; 102(2): e03237, 2021 02.
Article in English | MEDLINE | ID: mdl-33098661

ABSTRACT

Classical ecological theory posits that species partition resources such that each species occupies a unique resource niche. In general, the availability of more resources allows more species to co-occur. Thus, a strong relationship between communities of consumers and their resources is expected. However, correlations may be influenced by other layers in the food web, or by the environment. Here we show, by studying the relationship between communities of consumers (land snails) and individual diets (from seed plants), that there is in fact no direct, or at most a weak but negative, relationship. However, we found that the diversity of the individual microbiome positively correlates with both consumer community diversity and individual diet diversity in three target species. Moreover, these correlations were affected by various environmental variables, such as anthropogenic activity, habitat island size, and a possibly important nutrient source, guano runoff from nearby caves. Our results suggest that the microbiome and the environment explain the absence of correlations between diet and consumer community diversity. Hence, we advocate that microbiome inventories are routinely added to any community dietary analysis, which our study shows can be done with relatively little extra effort. Our approach presents the tools to quickly obtain an overview of the relationships between consumers and their resources. We anticipate our approach to be useful for ecologists and environmentalists studying different communities in a local food web.


Subject(s)
Ecosystem , Microbiota , Diet , Food Chain
7.
Front Microbiol ; 11: 1746, 2020.
Article in English | MEDLINE | ID: mdl-32849375

ABSTRACT

Organic farming is increasingly promoted as a means to reduce the environmental impact of artificial fertilizers, pesticides, herbicides, and antibiotics in conventional dairy systems. These factors potentially affect the microbial communities of the production stages (soil, silage, dung, and milk) of the entire farm cycle. However, understanding whether the microbiota representative of different production stages reflects different agricultural practices - such as conventional versus organic farming - is unknown. Furthermore, the translocation of the microbial community across production stages is scarcely studied. We sequenced the microbial communities of soil, silage, dung, and milk samples from organic and conventional dairy farms in the Netherlands. We found that community structure of soil fungi and bacteria significantly differed among soil types, but not between organic versus conventional farming systems. The microbial communities of silage also did not differ among conventional and organic systems. Nevertheless, the dung microbiota of cows and the fungal communities in the milk were significantly structured by agricultural practice. We conclude that, while the production stages of dairy farms seem to be disconnected in terms of microbial transfer, certain practices specific for each agricultural system, such as the content of diet and the use of antibiotics, are potential drivers of shifts in the cow's microbiota, including the milk produced. This may reflect differences in farm animal health and quality of dairy products depending on farming practices.

8.
Genes Chromosomes Cancer ; 49(6): 509-17, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20196086

ABSTRACT

We performed genotyping and exon-level expression profiling on 21 glioblastomas (GBMs) and 19 oligodendrogliomas (ODs) to identify genes involved in glioma initiation and/or progression. Low-copy number amplifications (2.5 < n < 7) and high-copy number amplifications (n > 7) were more frequently observed in GBMs; ODs generally have more heterozygous deletions per tumor. Four high-copy amplicons were identified in more than one sample and resulted in overexpression of the known oncogenes EGFR, MDM2, and CDK4. In the fourth amplicon, RBBP5, a member of the RB pathway, may act as a novel oncogene in GBMs. Not all hCNAs contain known genes, which may suggest that other transcriptional and/or regulatory elements are the target for amplification. Regions with most frequent allelic loss, both in ODs and GBMs, resulted in a reduced expression of known tumor suppressor genes. We identified a homozygous deletion spanning the Pragmin gene in one sample, but direct sequencing of all coding exons in 20 other glioma samples failed to detect additional genetic changes. Finally, we screened for fusion genes by identifying aberrant 5'-3' expression of genes that lie over regions of a copy number change. A fusion gene between exon 11 of LEO1 and exon 10 of SLC12A1 was identified. Our data show that integrated genomic profiling can identify genes involved in tumor initiation, and/or progression and can be used as an approach to identify novel fusion genes.


Subject(s)
Brain Neoplasms/genetics , Glioblastoma/genetics , Oligodendroglioma/genetics , Oncogene Proteins, Fusion/genetics , Sodium-Potassium-Chloride Symporters/genetics , Transcription Factors/genetics , DNA Copy Number Variations , DNA-Binding Proteins , Gene Expression Profiling/methods , Genes, Tumor Suppressor , Histocytochemistry , Humans , Nuclear Proteins , Solute Carrier Family 12, Member 1 , Translocation, Genetic
9.
Cancer Res ; 67(12): 5635-42, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17575129

ABSTRACT

Aberrant splice variants are involved in the initiation and/or progression of glial brain tumors. We therefore set out to identify splice variants that are differentially expressed between histologic subgroups of gliomas. Splice variants were identified using a novel platform that profiles the expression of virtually all known and predicted exons present in the human genome. Exon-level expression profiling was done on 26 glioblastomas, 22 oligodendrogliomas, and 6 control brain samples. Our results show that Human Exon arrays can identify subgroups of gliomas based on their histologic appearance and genetic aberrations. We next used our expression data to identify differentially expressed splice variants. In two independent approaches, we identified 49 and up to 459 exons that are differentially spliced between glioblastomas and oligodendrogliomas, a subset of which (47% and 33%) were confirmed by reverse transcription-PCR (RT-PCR). In addition, exon level expression profiling also identified >700 novel exons. Expression of approximately 67% of these candidate novel exons was confirmed by RT-PCR. Our results indicate that exon level expression profiling can be used to molecularly classify brain tumor subgroups, can identify differentially regulated splice variants, and can identify novel exons. The splice variants identified by exon level expression profiling may help to detect the genetic changes that cause or maintain gliomas and may serve as novel treatment targets.


Subject(s)
Brain Neoplasms/genetics , Exons , Gene Expression Profiling/methods , Glioma/genetics , Protein Isoforms/analysis , Brain Neoplasms/pathology , Gene Expression , Glioma/pathology , Humans , In Situ Hybridization , Reverse Transcriptase Polymerase Chain Reaction
10.
PLoS One ; 3(8): e3007, 2007 Aug 20.
Article in English | MEDLINE | ID: mdl-18688287

ABSTRACT

BACKGROUND: Identification of genes that are causally implicated in oncogenesis is a major goal in cancer research. An estimated 10-20% of cancer-related gene mutations result in skipping of one or more exons in the encoded transcripts. Here we report on a strategy to screen in a global fashion for such exon-skipping events using PAttern based Correlation (PAC). The PAC algorithm has been used previously to identify differentially expressed splice variants between two predefined subgroups. As genetic changes in cancer are sample specific, we tested the ability of PAC to identify aberrantly expressed exons in single samples. PRINCIPAL FINDINGS: As a proof-of-principle, we tested the PAC strategy on human cancer samples of which the complete coding sequence of eight cancer genes had been screened for mutations. PAC detected all seven exon-skipping mutants among 12 cancer cell lines. PAC also identified exon-skipping mutants in clinical cancer specimens although detection was compromised due to heterogeneous (wild-type) transcript expression. PAC reduced the number of candidate genes/exons for subsequent mutational analysis by two to three orders of magnitude and had a substantial true positive rate. Importantly, of 112 randomly selected outlier exons, sequence analysis identified two novel exon skipping events, two novel base changes and 21 previously reported base changes (SNPs). CONCLUSIONS: The ability of PAC to enrich for mutated transcripts and to identify known and novel genetic changes confirms its suitability as a strategy to identify candidate cancer genes.


Subject(s)
Breast Neoplasms/genetics , Exons/genetics , Genes, Neoplasm , Base Sequence , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Female , Gene Expression , Gene Expression Profiling , Genetics, Population , Humans , Oligonucleotide Array Sequence Analysis , PTEN Phosphohydrolase/genetics , Polymorphism, Single Nucleotide , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...