Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 144, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291058

ABSTRACT

The Santa Barbara Basin is an extraordinary archive of environmental and ecological change, where varved sediments preserve microfossils that provide an annual to decadal record of the dynamics of surrounding ecosystems. Of the microfossils preserved in these sediments, benthic foraminifera are the most abundant seafloor-dwelling organisms. While they have been extensively utilized for geochemical and paleoceanographic work, studies of their morphology are lacking. Here we use a high-throughput imaging method (AutoMorph) designed to extract 2D data from photographic images of fossils to produce a large image and 2D shape dataset of recent benthic foraminifera from two core records sampled from the center of the Santa Barbara Basin that span an ~800-year-long interval during the Common Era (1249-2008 CE). Information on more than 36,000 objects is included, of which more than 22,000 are complete or partially-damaged benthic foraminifera. The dataset also includes other biogenic microfossils including ostracods, pteropods, diatoms, radiolarians, fish teeth, and shark dermal denticles. We describe our sample preparation, imaging, and identification techniques, and outline potential data uses.


Subject(s)
Diatoms , Foraminifera , Animals , Ecosystem , Environmental Monitoring , Fishes , Fossils , Geologic Sediments
2.
Sci Adv ; 4(2): e1700618, 2018 02.
Article in English | MEDLINE | ID: mdl-29441357

ABSTRACT

Although Siberian Trap volcanism is considered a primary driver of the largest extinction in Earth history, the end-Permian crisis, the relationship between these events remains unclear. However, malformations in fossilized gymnosperm pollen from the extinction interval suggest biological stress coinciding with pulsed forest decline. These grains are hypothesized to have been caused by enhanced ultraviolet-B (UV-B) irradiation from volcanism-induced ozone shield deterioration. We tested this proposed mechanism by observing the effects of inferred end-Permian UV-B regimes on pollen development and reproductive success in living conifers. We find that pollen malformation frequencies increase fivefold under high UV-B intensities. Surprisingly, all trees survived but were sterilized under enhanced UV-B. These results support the hypothesis that heightened UV-B stress could have contributed not only to pollen malformation production but also to deforestation during Permian-Triassic crisis intervals. By reducing the fertility of several widespread gymnosperm lineages, pulsed ozone shield weakening could have induced repeated terrestrial biosphere destabilization and food web collapse without exerting a direct "kill" mechanism on land plants or animals. These findings challenge the paradigm that mass extinctions require kill mechanisms and suggest that modern conifer forests may be considerably more vulnerable to anthropogenic ozone layer depletion than expected.


Subject(s)
Earth, Planet , Extinction, Biological , Forests , Ozone/pharmacology , Ultraviolet Rays , Pinus/drug effects , Pinus/radiation effects , Pollen/drug effects , Pollen/radiation effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...