Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anesth Analg ; 136(2): 240-250, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36638508

ABSTRACT

BACKGROUND: One in 7 children will need general anesthesia (GA) before the age of 3. Brain toxicity of anesthetics is controversial. Our objective was to clarify whether exposure of GA to the developing brain could lead to lasting behavioral and structural brain changes. METHODS: A first study was performed in mice. The behaviors (fear conditioning, Y-maze, and actimetry) and brain anatomy (high-resolution magnetic resonance imaging) of 6- to 8-week-old Swiss mice exposed or not exposed to GA from 4 to 10 days old were evaluated. A second study was a complementary analysis from the preexisting APprentissages EXécutifs et cerveau chez les enfants d'âge scolaire (APEX) cohort to assess the replicability of our data in humans. The behaviors (behavior rating inventory of executive function, emotional control, and working memory score, Backward Digit Span, and Raven 36) and brain anatomy (high-resolution magnetic resonance imaging) were compared in 102 children 9 to 10 years of age exposed or not exposed to a single GA (surgery) during infancy. RESULTS: The animal study revealed chronic exacerbated fear behavior in the adult mice (95% confidence interval [CI], 4-80; P = .03) exposed to postnatal GA; this was associated with an 11% (95% CI, 7.5-14.5) reduction of the periaqueductal gray matter (P = .046). The study in humans suggested lower emotional control (95% CI, 0.33-9.10; P = .06) and a 6.1% (95% CI, 4.3-7.8) reduction in the posterior part of the right inferior frontal gyrus (P = .019) in the children who had been exposed to a single GA procedure. CONCLUSIONS: The preclinical and clinical findings of these independent studies suggest lasting effects of early life exposure to anesthetics on later emotional control behaviors and brain structures.


Subject(s)
Anesthetics , Brain , Humans , Child , Adult , Animals , Mice , Brain/diagnostic imaging , Anesthesia, General/adverse effects , Magnetic Resonance Imaging/methods , Memory, Short-Term
2.
Sci Rep ; 10(1): 19577, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33177650

ABSTRACT

Histone methyltransferase EZH2 is upregulated during osteoarthritis (OA), which is the most widespread rheumatic disease worldwide, and a leading cause of disability. This study aimed to assess the impact of EZH2 inhibition on cartilage degradation, inflammation and functional disability. In vitro, gain and loss of EZH2 function were performed in human articular OA chondrocytes stimulated with IL-1ß. In vivo, the effects of EZH2 inhibition were investigated on medial meniscectomy (MMX) OA mouse model. The tissue alterations were assayed by histology and the functional disabilities of the mice by actimetry and running wheel. In vitro, EZH2 overexpression exacerbated the action of IL-1ß in chondrocytes increasing the expression of genes involved in inflammation, pain (NO, PGE2, IL6, NGF) and catabolism (MMPs), whereas EZH2 inhibition by a pharmacological inhibitor, EPZ-6438, reduced IL-1ß effects. Ex vivo, EZH2 inhibition decreased IL-1ß-induced degradation of cartilage. In vivo, intra-articular injections of the EZH2 inhibitor reduced cartilage degradation and improved motor functions of OA mice. This study demonstrates that the pharmacological inhibition of the histone methyl-transferase EZH2 slows the progression of osteoarthritis and improves motor functions in an experimental OA model, suggesting that EZH2 could be an effective target for the treatment of OA by reducing catabolism, inflammation and pain.


Subject(s)
Cartilage, Articular/pathology , Enhancer of Zeste Homolog 2 Protein/genetics , Osteoarthritis/pathology , Aged , Aged, 80 and over , Animals , Benzamides/pharmacology , Biphenyl Compounds/pharmacology , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Chondrocytes/physiology , Disease Models, Animal , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Regulation , Humans , Interleukin-1beta/pharmacology , Male , Mice, Inbred C57BL , Middle Aged , Morpholines/pharmacology , Nerve Growth Factor/metabolism , Organ Culture Techniques , Pyridones/pharmacology
3.
Acta Neuropathol Commun ; 7(1): 153, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31610810

ABSTRACT

Major depressive disorder (MDD) is one of the most frequent psychiatric illnesses, leading to reduced quality of life, ability to work and sociability, thus ranking among the major causes of disability and morbidity worldwide. To date, genetic and environmental determinants of MDD remain mostly unknown. Here, we investigated whether and how the Plasminogen Activator Inhibitor-1 (PAI-1) may contribute to MDD. We first examined the phenotype of PAI-1 knockout (PAI-1-/-) and wild-type (PAI-1+/+) male mice with a range of behavioral tests assessing depressive-like behaviors (n = 276). We next investigated the mechanisms relating PAI-1 to MDD using molecular, biochemical and pharmacological analyzes. We demonstrate here that PAI-1 plays a key role in depression by a mechanism independent of the tissue-type Plasminogen Activator (tPA) - Brain-Derived Neurotrophic Factor (BDNF) axis, but associated with impaired metabolisms of serotonin and dopamine. Our data also reveal that PAI-1 interferes with therapeutic responses to selective serotonin reuptake inhibitors (escitalopram, fluoxetine). We thus highlight a new genetic preclinical model of depression, with the lack of PAI-1 as a factor of predisposition to MDD. Altogether, these original data reveal that PAI-1 should be now considered as a key player of MDD and as a potential target for the development of new drugs to cure depressive patients resistant to current treatments.


Subject(s)
Brain/metabolism , Depressive Disorder, Major/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Depression/metabolism , Disease Models, Animal , Dopamine/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Plasminogen Activator Inhibitor 1/genetics , Serotonin/metabolism , Tissue Plasminogen Activator/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...