Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Physiol Genomics ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808773

ABSTRACT

Commercial culture of channel catfish (Ictalurus punctatus) occurs in earthen ponds that are characterized by diel swings in dissolved oxygen concentration that can fall to severe levels of hypoxia which can suppress appetite and lead to suboptimal growth. Given the significance of the hypothalamus in regulating these processes in other fishes, an investigation into the hypothalamus transcriptome was conducted to identify specific genes and expression patterns responding to hypoxia. Channel catfish in normoxic water were compared to catfish subjected to 12 hours of hypoxia (20% oxygen saturation; 1.8 mg O2/L; 27 °C) followed by 12 hours of recovery in normoxia to mimic 24-hours in a catfish aquaculture pond. Fish were sampled at 0-, 6-, 12-, 18-, and 24-hour time points, with the 6- and 12-hour samplings occurring during hypoxia. A total of 190 genes were differentially expressed during the experiment, with most occurring during hypoxia and returning to baseline values within 6 hours of normoxia. Differentially expressed genes were sorted by function into Gene Ontology biological processes and revealed that most were categorized as "response to hypoxia", "sprouting angiogenesis", and "cellular response to xenobiotic stimulus". The patterns of gene expression reported here suggest that transcriptome responses to hypoxia are broad and quickly reversibly with the onset of normoxia. Although no genes commonly reported to modulate appetite were found to be differentially expressed in this experiment, several candidates were identified for future studies investigating the interplay between hypoxia and appetite in channel catfish, including adm, igfbp1a, igfbp7, and stc2b.

2.
BMC Biol ; 21(1): 67, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013528

ABSTRACT

BACKGROUND: Channel catfish and blue catfish are the most important aquacultured species in the USA. The species do not readily intermate naturally but F1 hybrids can be produced through artificial spawning. F1 hybrids produced by mating channel catfish female with blue catfish male exhibit heterosis and provide an ideal system to study reproductive isolation and hybrid vigor. The purpose of the study was to generate high-quality chromosome level reference genome sequences and to determine their genomic similarities and differences. RESULTS: We present high-quality reference genome sequences for both channel catfish and blue catfish, containing only 67 and 139 total gaps, respectively. We also report three pericentric chromosome inversions between the two genomes, as evidenced by long reads across the inversion junctions from distinct individuals, genetic linkage mapping, and PCR amplicons across the inversion junctions. Recombination rates within the inversional segments, detected as double crossovers, are extremely low among backcross progenies (progenies of channel catfish female × F1 hybrid male), suggesting that the pericentric inversions interrupt postzygotic recombination or survival of recombinants. Identification of channel catfish- and blue catfish-specific genes, along with expansions of immunoglobulin genes and centromeric Xba elements, provides insights into genomic hallmarks of these species. CONCLUSIONS: We generated high-quality reference genome sequences for both blue catfish and channel catfish and identified major chromosomal inversions on chromosomes 6, 11, and 24. These perimetric inversions were validated by additional sequencing analysis, genetic linkage mapping, and PCR analysis across the inversion junctions. The reference genome sequences, as well as the contrasted chromosomal architecture should provide guidance for the interspecific breeding programs.


Subject(s)
Ictaluridae , Humans , Animals , Male , Female , Ictaluridae/genetics , Chromosome Inversion , Genetic Linkage , Genome , Chromosome Mapping
3.
Front Fungal Biol ; 3: 923112, 2022.
Article in English | MEDLINE | ID: mdl-37746160

ABSTRACT

The important cereal crops of maize, rye, and wheat constitutively produce precursors to 2-benzoxazolinone, a phytochemical having antifungal effects towards many Fusarium species. However, Fusarium verticillioides can tolerate 2-benzoxazolinone by converting it into non-toxic metabolites through the synergism of two previously identified gene clusters, FDB1 and FDB2. Inspired by the induction of these two clusters upon exposure to 2-benzoxazolinone, RNA sequencing experiments were carried out by challenging F. verticillioides individually with 2-benzoxazolinone and three related chemical compounds, 2-oxindole, 2-coumaranone, and chlorzoxazone. These compounds all contain lactam and/or lactone moieties, and transcriptional analysis provided inferences regarding the degradation of such lactams and lactones. Besides induction of FDB1 and FDB2 gene clusters, four additional clusters were identified as induced by 2-benzoxazolinone exposure, including a cluster thought to be responsible for biosynthesis of pyridoxine (vitamin B6), a known antioxidant providing tolerance to reactive oxygen species. Three putative gene clusters were identified as induced by challenging F. verticillioides with 2-oxindole, two with 2-coumaranone, and two with chlorzoxazone. Interestingly, 2-benzoxazolinone and 2-oxindole each induced two specific gene clusters with similar composition of enzymatic functions. Exposure to 2-coumranone elicited the expression of the fusaric acid biosynthetic gene cluster. Another gene cluster that may encode enzymes responsible for degrading intermediate catabolic metabolites with carboxylic ester bonds was induced by 2-benzoxazolinone, 2-oxindole, and chlorzoxazone. Also, the induction of a dehalogenase encoding gene during chlorzoxazone exposure suggested its role in the removal of the chlorine atom. Together, this work identifies genes and putative gene clusters responsive to the 2-benzoxazolinone-like compounds with metabolic inferences. Potential targets for future functional analyses are discussed.

4.
Front Fungal Biol ; 3: 894590, 2022.
Article in English | MEDLINE | ID: mdl-37746240

ABSTRACT

Fusarium verticillioides is a mycotoxigenic fungus that is a threat to food and feed safety due to its common infection of maize, a global staple crop. A proposed strategy to combat this threat is the use of biological control bacteria that can inhibit the fungus and reduce mycotoxin contamination. In this study, the effect of multiple environmental isolates of Streptomyces on F. verticillioides was examined via transcriptome analysis. The Streptomyces strains ranged from inducing no visible response to dramatic growth inhibition. Transcriptionally, F. verticillioides responded proportionally to strain inhibition with either little to no transcript changes to thousands of genes being differentially expressed. Expression changes in multiple F. verticillioides putative secondary metabolite gene clusters was observed. Interestingly, genes involved in the fusaric acid gene cluster were suppressed by inhibitory strains of Streptomyces. A F. verticillioides beta-lactamase encoding gene (FVEG_13172) was found to be highly induced by specific inhibitory Streptomyces strains and its deletion increased visible response to those strains. This study demonstrates that F. verticillioides does not have an all or nothing response to bacteria it encounters but rather a measured response that is strain specific and proportional to the strength of inhibition.

5.
PLoS Pathog ; 16(7): e1008595, 2020 07.
Article in English | MEDLINE | ID: mdl-32628727

ABSTRACT

Sarocladium zeae is a fungal endophyte of maize and can be found co-inhabiting a single seed with Fusarium verticillioides, a major mycotoxigenic food safety threat. S. zeae produces pyrrocidines A and B that inhibit the growth of F. verticillioides and may limit its spread within the seed to locations lacking S. zeae. Although coinhabiting single seeds, the fungi are generally segregated in separate tissues. To understand F. verticillioides' protective physiological response to pyrrocidines we sequenced the F. verticillioides transcriptome upon exposure to purified pyrrocidine A or B at sub-inhibitory concentrations. Through this work we identified a F. verticillioides locus FvABC3 (FVEG_11089) encoding a transporter critical for resistance to pyrrocidine. We also identified FvZBD1 (FVEG_00314), a gene directly adjacent to the fumonisin biosynthetic gene cluster that was induced several thousand-fold in response to pyrrocidines. FvZBD1 is postulated to act as a genetic repressor of fumonisin production since deletion of the gene resulted in orders of magnitude increase in fumonisin. Further, pyrrocidine acts, likely through FvZBD1, to shut off fumonisin biosynthesis. This suggests that S. zeae is able to hack the secondary metabolic program of a competitor fungus, perhaps as preemptive self-protection, in this case impacting a mycotoxin of central concern for food safety.


Subject(s)
Acremonium , Fumonisins/metabolism , Fusarium/genetics , Mycoses/microbiology , Plant Diseases/microbiology , Zea mays/microbiology , Bridged-Ring Compounds/metabolism , Bridged-Ring Compounds/pharmacology , Coinfection , Disease Resistance/genetics , Genes, Fungal , Mycoses/metabolism , Pyrrolidinones/metabolism , Pyrrolidinones/pharmacology
6.
Physiol Plant ; 169(1): 99-109, 2020 May.
Article in English | MEDLINE | ID: mdl-31828797

ABSTRACT

The mechanism of phytotoxicity of citral was probed in Arabidopsis thaliana using RNA-Seq and in silico binding analyses. Inhibition of growth by 50% by citral downregulated transcription of 9156 and 5541 genes in roots and shoots, respectively, after 1 h. Only 56 and 62 genes in roots and shoots, respectively, were upregulated. In the shoots, the downregulation increased at 3 h (6239 genes downregulated, vs 66 upregulated). Of all genes affected in roots at 1 h (time of greatest effect), 7.69% of affected genes were for nucleic acid binding functions. Genes for single strand DNA binding proteins (SSBP) WHY1, WHY 2 and WHY3 were strongly downregulated in the shoot up until 12 h after citral exposure. Effects were strong in the root at just 1 h after the treatment and then at 12 and 24 h. Similar effects occurred with the transcription factors MYC-2, ANAC and SCR-SHR, which were also significantly downregulated for the first hour of treatment, and downregulation occurred again after 12 and 24 h treatment. Downregulation of ANAC in the first hour of treatment was significantly (P < 0.0001) decreased more than eight times compared to the control. In silico molecular docking analysis suggests binding of citral isomers to the SSBPs WHY1, WHY2, and WHY3, as well as with other transcription factors such as MYC-2, ANAC and SCR-SHR. Such effects could account for the profound and unusual effects of citral on downregulation of gene transcription.


Subject(s)
Acyclic Monoterpenes/pharmacology , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis/drug effects , DNA-Binding Proteins/antagonists & inhibitors , Transcriptome , Arabidopsis/genetics , Gene Expression Regulation, Plant , Molecular Docking Simulation , Plant Roots/drug effects , Plant Roots/genetics , RNA-Seq
7.
Pest Manag Sci ; 75(9): 2490-2504, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30868714

ABSTRACT

BACKGROUND: New modes of action are needed for herbicides. The flavonoid synthesis intermediate t-chalcone causes apoptosis-like symptoms in roots and bleaching of shoots of Arabidospsis, suggesting a unique mode of action as a phytotoxin. RESULTS: Using RNA-Seq, transcriptome changes were monitored in Arabidopsis seedlings during the first 24 h of exposure (at 1, 3, 6, 12 and 24 h) to 21 µm t-chalcone (I50 dose), examining effects on roots and shoots separately. Expression of 892 and 1000 genes was affected in roots and shoots, respectively. According to biological classification, many of the affected genes were transcription factors and genes associated with oxidative stress, heat shock proteins, xenobiotic detoxification, ABA and auxin biosynthesis, and primary metabolic processess. These are secondary effects found with most phytotoxins. Potent phytotoxins usually act by inhibiting enzymes of primary metabolism. KEGG pathway analysis of transcriptome results from the first 3 h of t-chalcone exposure indicated several potential primary metabolism target sites for t-chalcone. Of these, p-hydroxyphenylpyruvate dioxygenase (HPPD) and tyrosine amino transferase were consistent with the bleaching effect of the phytotoxin. Supplementation studies with Lemna paucicostata and Arabidiopsis supported HPPD as the target, although in vitro enzyme inhibition was not found. CONCLUSIONS: t-Chalcone is possibly a protoxin that is converted to a HPPD inhibitor in vivo. © 2019 Society of Chemical Industry.


Subject(s)
Arabidopsis/drug effects , Biological Control Agents/toxicity , Chalcone/toxicity , Herbicides/toxicity , Transcriptome/drug effects , Apoptosis , Arabidopsis/growth & development , Plant Roots/drug effects , Plant Shoots/drug effects , Seedlings/drug effects , Seedlings/growth & development
8.
Nat Commun ; 7: 11757, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27249958

ABSTRACT

Catfish represent 12% of teleost or 6.3% of all vertebrate species, and are of enormous economic value. Here we report a high-quality reference genome sequence of channel catfish (Ictalurus punctatus), the major aquaculture species in the US. The reference genome sequence was validated by genetic mapping of 54,000 SNPs, and annotated with 26,661 predicted protein-coding genes. Through comparative analysis of genomes and transcriptomes of scaled and scaleless fish and scale regeneration experiments, we address the genomic basis for the most striking physical characteristic of catfish, the evolutionary loss of scales and provide evidence that lack of secretory calcium-binding phosphoproteins accounts for the evolutionary loss of scales in catfish. The channel catfish reference genome sequence, along with two additional genome sequences and transcriptomes of scaled catfishes, provide crucial resources for evolutionary and biological studies. This work also demonstrates the power of comparative subtraction of candidate genes for traits of structural significance.


Subject(s)
Animal Scales/metabolism , Biological Evolution , Fish Proteins/genetics , Genome , Ictaluridae/genetics , Phylogeny , Animal Scales/anatomy & histology , Animals , Base Sequence , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Chromosome Mapping , Fish Proteins/metabolism , Gene Expression Regulation , Gene Ontology , Ictaluridae/classification , Molecular Sequence Annotation , Open Reading Frames , Phosphoproteins/genetics , Phosphoproteins/metabolism , Polymorphism, Single Nucleotide , Sequence Alignment
9.
BMC Genomics ; 16: 477, 2015 Jun 27.
Article in English | MEDLINE | ID: mdl-26116072

ABSTRACT

BACKGROUND: The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber. RESULTS: Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA. CONCLUSIONS: The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length.


Subject(s)
Cell Wall/genetics , Gossypium/genetics , Metabolome/genetics , Transcriptome/genetics , Carbohydrate Metabolism/genetics , Cotton Fiber/methods , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Glucosyltransferases/genetics , Metabolomics/methods
10.
Molecules ; 20(6): 11400-17, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26111173

ABSTRACT

Pouteria sapota is known for its edible fruits that contain unique carotenoids, as well as for its fungitoxic, anti-inflammatory and anti-oxidant activity. However, its genetics is mostly unknown, including aspects about its genetic diversity and domestication process. We did high-throughput sequencing of microsatellite-enriched libraries of P. sapota, generated 5223 contig DNA sequences, 1.8 Mbp, developed 368 microsatellites markers and tested them on 29 individuals from 10 populations (seven wild, three cultivated) from Mexico, its putative domestication center. Gene ontology BLAST analysis of the DNA sequences containing microsatellites showed potential association to physiological functions. Genetic diversity was slightly higher in cultivated than in the wild gene pool (HE = 0.41 and HE = 0.35, respectively), although modified Garza-Williamson Index and Bottleneck software showed evidence for a reduction in genetic diversity for the cultivated one. Neighbor Joining, 3D Principal Coordinates Analysis and assignment tests grouped most individuals according to their geographic origin but no clear separation was observed between wild or cultivated gene pools due to, perhaps, the existence of several admixed populations. The developed microsatellites have a great potential in genetic population and domestication studies of P. sapota but additional sampling will be necessary to better understand how the domestication process has impacted the genetic diversity of this fruit crop.


Subject(s)
High-Throughput Nucleotide Sequencing , Microsatellite Repeats/genetics , Polymorphism, Genetic , Pouteria/genetics , Genetic Variation , Genetics, Population , Humans , Mexico
11.
Mol Plant Pathol ; 15(4): 379-93, 2014 May.
Article in English | MEDLINE | ID: mdl-24341524

ABSTRACT

Haustoria of biotrophic rust fungi are responsible for the uptake of nutrients from their hosts and for the production of secreted proteins, known as effectors, which modulate the host immune system. The identification of the transcriptome of haustoria and an understanding of the functions of expressed genes therefore hold essential keys for the elucidation of fungus-plant interactions and the development of novel fungal control strategies. Here, we purified haustoria from infected leaves and used 454 sequencing to examine the haustorial transcriptomes of Phakopsora pachyrhizi and Uromyces appendiculatus, the causal agents of soybean rust and common bean rust, respectively. These pathogens cause extensive yield losses in their respective legume crop hosts. A series of analyses were used to annotate expressed sequences, including transposable elements and viruses, to predict secreted proteins from the assembled sequences and to identify families of candidate effectors. This work provides a foundation for the comparative analysis of haustorial gene expression with further insights into physiology and effector evolution.


Subject(s)
Basidiomycota/physiology , Fungi/physiology , Transcriptome/genetics , Expressed Sequence Tags , Fabaceae/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Plant Diseases/microbiology , Glycine max/microbiology
12.
Nature ; 492(7429): 423-7, 2012 Dec 20.
Article in English | MEDLINE | ID: mdl-23257886

ABSTRACT

Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1-2 Myr ago, conferred about 30-36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum A(t)D(t) (in which 't' indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.


Subject(s)
Biological Evolution , Cotton Fiber , Genome, Plant/genetics , Gossypium/genetics , Polyploidy , Alleles , Cacao/genetics , Chromosomes, Plant/genetics , Diploidy , Gene Duplication/genetics , Genes, Plant/genetics , Gossypium/classification , Molecular Sequence Annotation , Phylogeny , Vitis/genetics
13.
Virol J ; 7: 313, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21073719

ABSTRACT

Viral enteric disease is an ongoing economic burden to poultry producers worldwide, and despite considerable research, no single virus has emerged as a likely causative agent and target for prevention and control efforts. Historically, electron microscopy has been used to identify suspect viruses, with many small, round viruses eluding classification based solely on morphology. National and regional surveys using molecular diagnostics have revealed that suspect viruses continuously circulate in United States poultry, with many viruses appearing concomitantly and in healthy birds. High-throughput nucleic acid pyrosequencing is a powerful diagnostic technology capable of determining the full genomic repertoire present in a complex environmental sample. We utilized the Roche/454 Life Sciences GS-FLX platform to compile an RNA virus metagenome from turkey flocks experiencing enteric disease. This approach yielded numerous sequences homologous to viruses in the BLAST nr protein database, many of which have not been described in turkeys. Our analysis of this turkey gut RNA metagenome focuses in particular on the turkey-origin members of the Picornavirales, the Caliciviridae, and the turkey Picobirnaviruses.


Subject(s)
Biodiversity , Gastrointestinal Tract/virology , Metagenome , RNA Viruses/classification , RNA Viruses/genetics , Animals , Caliciviridae/classification , Caliciviridae/genetics , Caliciviridae/isolation & purification , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Picobirnavirus/classification , Picobirnavirus/genetics , Picobirnavirus/isolation & purification , Picornaviridae/classification , Picornaviridae/genetics , Picornaviridae/isolation & purification , RNA Viruses/isolation & purification , Turkeys , United States
14.
BMC Genomics ; 8: 40, 2007 Feb 06.
Article in English | MEDLINE | ID: mdl-17284319

ABSTRACT

BACKGROUND: Channel catfish, Ictalurus punctatus, is the leading species in North American aquaculture. Genetic improvement of catfish is performed through selective breeding, and genomic tools will help improve selection efficiency. A physical map is needed to integrate the genetic map with the karyotype and to support fine mapping of phenotypic trait alleles such as Quantitative Trait Loci (QTL) and the effective positional cloning of genes. RESULTS: A genome-wide physical map of the channel catfish was constructed by High-Information-Content Fingerprinting (HICF) of 46,548 Bacterial Artificial Chromosomes (BAC) clones using the SNaPshot technique. The clones were assembled into contigs with FPC software. The resulting assembly contained 1,782 contigs and covered an estimated physical length of 0.93 Gb. The validity of the assembly was demonstrated by 1) anchoring 19 of the largest contigs to the microsatellite linkage map 2) comparing the assembly of a multi-gene family to Restriction Fragment Length Polymorphism (RFLP) patterns seen in Southern blots, and 3) contig sequencing. CONCLUSION: This is the first physical map for channel catfish. The HICF technique allowed the project to be finished with a limited amount of human resource in a high throughput manner. This physical map will greatly facilitate the detailed study of many different genomic regions in channel catfish, and the positional cloning of genes controlling economically important production traits.


Subject(s)
Genome , Ictaluridae/genetics , Physical Chromosome Mapping , Animals , Base Sequence , Blotting, Southern , Chromosomes, Artificial, Bacterial , DNA Primers , Electrophoresis, Capillary , Genetic Linkage , Polymorphism, Restriction Fragment Length , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...