Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(6): e66307, 2013.
Article in English | MEDLINE | ID: mdl-23824913

ABSTRACT

Gliadin triggers T-cell mediated immunity in celiac disease, and has cytotoxic effects on enterocytes mediated through obscure mechanisms. In addition, gliadin transport mechanisms, potential cell surface receptors and gliadin-activated downstream signaling pathways are not completely understood. In order to screen for novel downstream gliadin target genes we performed a systematic whole genome expression study on intestinal epithelial cells. Undifferentiated Caco-2 cells were exposed to pepsin- and trypsin- digested gliadin (PT-G), a blank pepsin-trypsin control (PT) and to a synthetic peptide corresponding to gliadin p31-43 peptide for six hours. RNA from four different experiments was used for hybridization on Agilent one color human whole genome DNA microarray chips. The microarray data were analyzed using the Bioconductor package LIMMA. Genes with nominal p<0.01 were considered statistically significant. Compared to the untreated cells 1705, 1755 and 211 probes were affected by PT-G, PT and p31-43 respectively. 46 probes were significantly different between PT and PT-G treated cells. Among the p31-43 peptide affected probes, 10 and 21 probes were affected by PT-G and PT respectively. Only PT-G affected genes could be validated by quantitative real-time polymerase chain reaction. All the genes were, nonetheless, also affected to a comparable level by PT treated negative controls. In conclusion, we could not replicate previously reported direct effects of gliadin peptides on enterocytes. The results rather suggest that certain epitopes derived from pepsin and trypsin may also affect epithelial cell gene transcription. Our study suggests novel non-enzymatic effects of pepsin and trypsin on cells and calls for proper controls in pepsin and trypsin digested gliadin experiments. It is conceivable that gliadin effects on enterocytes are secondary mediated through oxidative stress, NFkB activation and IL-15 up-regulation.


Subject(s)
Gene Expression Profiling , Gliadin/genetics , Intestinal Mucosa/metabolism , Pepsin A/metabolism , Trypsin/metabolism , Caco-2 Cells , Humans , Intestinal Mucosa/immunology , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction
2.
BMC Med Genet ; 10: 8, 2009 Jan 28.
Article in English | MEDLINE | ID: mdl-19175939

ABSTRACT

BACKGROUND: Association of the interleukin-23 receptor (IL23R) with inflammatory bowel disease (IBD) has been confirmed in several populations. IL23R also associates with psoriasis, suggesting that the gene may be an important candidate for many chronic inflammatory diseases. METHODS: We studied association of single-nucleotide variants in IL23R with IBD in Swedish patients, in both Crohn's disease (CD) and ulcerative colitis (UC) subsets. The same genetic variants were also studied in Finnish patients with psoriasis or celiac disease, and in Hungarian and Italian patients with celiac disease. RESULTS: Association of IL23R with IBD was replicated in our Swedish patients, and linkage and association of the IL23R region with psoriasis was found in the Finnish population. The IL23R region was also linked to celiac disease in Finnish families, but no association of IL23R variants with celiac disease was found in the Finnish, Hungarian or Italian samples. CONCLUSION: Our study is the first to demonstrate association of IL23R with CD and UC in Swedish patients with IBD. It is also the first study to report linkage and association of the IL23R region with psoriasis in the Finnish population. Importantly, this is the first report of linkage of the IL23R region to celiac disease, a chronic inflammatory condition in which IL23R has not been previously implicated.


Subject(s)
Celiac Disease/genetics , Colitis, Ulcerative/genetics , Crohn Disease/genetics , Psoriasis/genetics , Receptors, Interleukin/genetics , Case-Control Studies , Celiac Disease/complications , Colitis, Ulcerative/complications , Crohn Disease/complications , Finland , Genetic Markers , Genetic Predisposition to Disease , Genotype , Haplotypes , Humans , Hungary , Italy , Linkage Disequilibrium , Psoriasis/complications , Sweden
3.
Hum Mol Genet ; 18(6): 1148-55, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19103669

ABSTRACT

Coeliac disease is caused by dietary gluten, triggering a chronic inflammation of the small intestine in genetically predisposed individuals. Recently, a risk locus on chromosome 2q11-q12, harbouring interleukin 18 receptor accessory protein (IL18RAP) and three other genes, was suggested for coeliac disease. IL18 has been shown to play an important role in T helper type 1 activity in coeliac disease, making this locus a highly interesting candidate. In this study, two previously indicated risk variants at the IL18RAP locus (rs13015714 and rs917997) were tested for genetic association in 1638 cases with coeliac disease and 1385 control individuals from the Finnish, Hungarian and Italian populations. The protein expression level of IL18RAP was also compared between risk allele carriers and non-carriers by Western blotting. Furthermore, immunohistochemical analysis was performed to study IL18RAP protein expression in small intestinal biopsies of untreated and treated coeliac patients and controls. We confirmed genetic association and dose effects of variants at the 2q12.1 locus with coeliac disease in the Hungarian population. The GA haplotype of the markers rs13015714 and rs917997 showed the strongest association (P = 0.0001, odds ratio = 1.475, 95% confidence interval 1.21-1.80). Two putative isoforms of IL18RAP were detected and the ratios and total levels of these isoforms may contribute to the aetiology of coeliac disease. Our study supports IL18RAP as a novel predisposing gene for coeliac disease and highlights the need for further functional studies on this relatively unknown gene in coeliac disease pathogenesis.


Subject(s)
Celiac Disease/genetics , Genetic Predisposition to Disease , Interleukin-18 Receptor beta Subunit/genetics , White People/genetics , Blotting, Western , Female , Humans , Intestine, Small/metabolism , Intestine, Small/pathology , Leukocytes/metabolism , Male , Meta-Analysis as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...