Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1863(8): 1302-1317, 2019 08.
Article in English | MEDLINE | ID: mdl-31034911

ABSTRACT

A reversible post-translational protein modification which involves addition of N-acetylglucosamine (GlcNAc) onto hydroxyl groups of serine and/or threonine residues which is known as O-GlcNAcylation, has emerged as a potent competitor of phosphorylation. This glycosyltransfer reaction is catalyzed by the enzyme O-linked ß-N-acetylglucosamine transferase (OGT). This enzyme uses uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the end product of hexosamine biosynthetic pathway, to modify numerous nuclear and cytosolic proteins. O-GlcNAcylation influences cancer cell metabolism in such a way that hyper-O-GlcNAcylation is considered as a prominent trait of many cancers, and is proposed as a major factor enabling cancer cell proliferation and progression. Growing evidence supports a connection between O-GlcNAcylation and major oncogenic factors, including for example, c-MYC, HIF-1α, and NF-κB. A comprehensive study of the roles of O-GlcNAc modification of oncogenic factors is warranted as a thorough understanding may help drive advances in cancer diagnosis and therapy. The focus of this article is to highlight the interplay between oncogenic factors and O-GlcNAcylation along with OGT in cancer cell proliferation and survival. The prospects for OGT inhibitors will also be discussed.


Subject(s)
Acetylglucosamine/metabolism , Oncogenes , Enzyme Inhibitors/metabolism , Glycosylation , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasms/metabolism , Sterol Regulatory Element Binding Proteins/metabolism , beta Catenin/metabolism
2.
Neurosci Lett ; 632: 218-23, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27597761

ABSTRACT

Accumulating data links inflammation, oxidative stress and immune system in the pathophysiology of major depressive disorders. Sickness behaviour is a set of behavioural changes that develop during infection, eventually leading to decrease in mobility and depressed behaviour. Lipopolysaccharide (LPS) induces a depression-like state in animals that mimics sickness behaviour. Caffeic acid, a naturally occurring polyphenol, possesses antioxidant and anti-inflammatory properties. The present study was designed to explore the potential of caffeic acid against LPS-induced sickness behaviour in mice. Caffeic acid (30mg/kg) and imipramine (15mg/kg) were administered orally one hour prior to LPS (1.5mg/kg) challenge. Behavioural assessment was carried out between 1 and 2h and blood samples were collected at 3h post-LPS injection. Additionally, cytokines (brain and serum) and brain oxidative stress markers were estimated. LPS increased the systemic and brain cytokine levels, altered the anti-oxidant defence and produced key signs of sickness behaviour in animals. Caffeic acid treatment significantly reduced the LPS-induced changes, including reduced expression of inflammatory markers in serum and whole brain. Caffeic acid also exerted an anti-oxidant effect, which was evident from the decreased levels of oxidative stress markers in whole brain. Our data suggests that caffeic acid can prevent the neuroinflammation-induced acute and probably the long term neurodegenerative changes.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Behavior, Animal/drug effects , Brain/drug effects , Caffeic Acids/pharmacology , Illness Behavior/drug effects , Inflammation/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Brain/metabolism , Caffeic Acids/therapeutic use , Cytokines/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides , Male , Mice , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...