Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 10(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674253

ABSTRACT

Calf disbudding is a painful husbandry practice on dairy and beef cattle farms. An objective measurement of pain is useful to reliably evaluate the pain intensity and anti-nociceptive (analgesic) efficacy of therapeutic agents. The aim of this study was to investigate the changes in peripheral leucocyte inflammatory cytokine gene expression in calves after disbudding, and to assess whether the changes in cytokine gene expression could be an indicator of the efficacy of analgesic drugs. In a randomised controlled study, 16 calves (aged 31 to 41 days and weighing 58 to 73 kg), undergoing routine disbudding, were randomly allocated into two groups (n = 8 in each group). Calves in the control group received no analgesic, while those in the treatment group received 0.5 mg kg-1 meloxicam subcutaneously prior to disbudding. Disbudding was performed using an electric debudder. Blood (10 mL) was sampled from the jugular vein just before and 4 and 24 h post-disbudding, RNA was extracted from leukocytes, and the transcription of 12 genes of interest was assessed using nCounter gene expression assay. The results showed significantly higher transcription (compared to baseline values) of the studied genes (except CRH, IFNγ, and IL10) in the control group calves at either 4 or 24 h post-disbudding. The administration of meloxicam one hour before disbudding significantly attenuated the upregulation of IL6, PGHS2, TAC1, NOS1, and CRH gene transcription post-disbudding, while it did not suppress the elevated transcription of acute and pro-inflammatory cytokines such as IL1ß, IFNγ, IL8, and TNFα genes. In conclusion, nCounter gene expression assay seems to be a promising tool to study the expression of cytokine genes and thus could be used for the pre-clinical evaluation of novel analgesics.

2.
BMC Neurol ; 18(1): 43, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29673329

ABSTRACT

BACKGROUND: The objective of this study was to compare the changes in the electroencephalogram (EEG) in response to noxious stimuli with tail flick and hot plate responses of rats administered opiorphin. METHODS: Female Sprague -Dawley rats (n = 8 per group) randomly received intravenous (IV) injection of morphine (1 mg/kg,) or opiorphin (2 mg/kg,) or saline (0.5 ml,) in each of the three testing methods (EEG, tail flick and hot plate). Each type of test (n = 24 per test) was conducted in different population of rats on separate occasions. The tail flick and hot plate latencies were recorded until 5 min after test drug administration to conscious rats. The EEG was recorded in anaesthetised rats subjected to noxious thermal and electrical stimuli after test drug administration. At the end of 5 min in each of the testing methods rats were administered naloxone subcutaneously (SC) (1 mg/kg) and the test procedure was repeated. RESULTS: There was no significant increase in the median frequency and spectral edge frequency (F50 & F95) of EEG, indicators of nociception, of morphine and opiorphin groups after noxious stimulation. Noxious stimuli caused a significant increase in both F50 and F95 of the saline group. An injection of naloxone significantly increased the F50, thus blocking the action of both opiorphin and morphine. There was a significant increase in the tail flick latency after administration of opiorphin and morphine as compared to the baseline values. Rats of morphine group spent significantly longer on the hot plate when compared to those of the opiorphin and saline groups. There was no significant difference in the hot plate latencies of opiorphin and saline groups. CONCLUSION: The results of this study suggest that the analgesic effect of opiorphin occurs at the spinal level and it is not as effective as morphine at supraspinal level. It may be due to rapid degradation of opiorphin or limited ability of opiorphin to cross the blood brain barrier or a higher dose of opiorphin is required for its action in the brain. Pharmacokinetic/pharmacodynamics studies along with in vivo penetration of opiorphin in the cerebrospinal fluid are required for further evaluation of opiorphin analgesia.


Subject(s)
Electroencephalography/drug effects , Morphine/pharmacology , Oligopeptides/pharmacology , Pain Management/methods , Salivary Proteins and Peptides/pharmacology , Animals , Female , Pain/etiology , Pain Measurement/drug effects , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...