Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Zookeys ; 922: 141-155, 2020.
Article in English | MEDLINE | ID: mdl-32265594

ABSTRACT

Simulium reptans (Linnaeus, 1758) and Simulium reptantoides Carlsson, 1962 are two species of the Simulium reptans group whose distribution is unclear because of their confusing taxonomy and systematics. Their genetic variability is well known for populations in northern and central Europe and shows that both species have two forms; however, the genetic variability of these species in southern and eastern Europe is unknown. To identify the status of these two species in southeast Europe, mtDNA was extracted from 19 individuals from 12 localities across the Balkan Peninsula. Phylogenetic analysis confirmed the existence of two species with 7.38-7.94% divergence. Each species was comprised of two clades, with 2.31% and 1.43% interclade divergence for S. reptans and S. reptantoides, respectively. This study revealed the presence of both species across the Balkans and that S. reptans occurs in this area in only one form (S. reptans B), while S. reptantoides is found in two genetic forms (A and B).

2.
J Med Entomol ; 56(4): 967-978, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31220292

ABSTRACT

Many morphologically similar species of the simuliid (Diptera: Simuliidae) subgenus Wilhelmia, Enderlein are difficult to distinguish. Thus, the revision of the subgenus using various morphological, cytogenetic, and genetic analyses has been attempted. Neglected until now, the Balkan Peninsula, a crossroad between Europe and Anatolia, provides insight which could resolve problematic interrelationships of the taxa within this subgenus. To uncover the status and relations within the subgenus Wilhelmia, mtDNA was extracted from 47 individuals of six morphospecies: Simulium balcanicum (Enderlein, 1924), Simulium turgaicum Rubtsov, 1940, Simulium lineatum (Meigen, 1804), Simulium pseudequinum Séguy, 1921, Simulium equinum (Linnaeus, 1758), and Simulium paraequinum Puri, 1933 from 21 sites throughout the Balkan Peninsula. Phylogenetic analysis of the Wilhelmia species using mitochondrial DNA barcoding (COI) gene showed two major branches, the lineatum branch, which includes the lineages sergenti, paraequinum, and lineatum, and the equinum branch. In the equinum branch, the mtDNA sequences formed six clades, with high genetic distances, suggesting the existence of different species. Historically, the clades of the equinum branch appeared at numerous islands, perhaps as a result of allopatric speciation. The paraequinum lineage (lineatum branch) is composed of two species. However, six clades of the lineatum lineage overlapped with intra- and interspecific genetic distances. Our results revealed that the species S. balcanicum, S. pseudequinum B, and S. equinum were omnipresent in the Balkans. The results point to not only the fair diversity of Wilhelmia species in the Balkans, but also indicate that most Wilhelmia species live in sympatry.


Subject(s)
Simuliidae/genetics , Animals , Balkan Peninsula , Phylogeography
3.
Sci Total Environ ; 616-617: 472-479, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29127801

ABSTRACT

The chironomid community in non-wadeable lotic systems was tested as a source of information in the construction of biological metrics which could be used into the bioassessment protocols of large rivers. In order to achieve this, we simultaneously patterned the chironomid community structure and environmental factors along the catchment of the Danube and Sava River. The Self organizing map (SOM) recognized and visualized three different structural types of chironomid community for different environmental properties, described by means of 7 significant abiotic factors (a multi-stressor gradient). Indicator species analysis revealed that the chironomid taxa most responsible for structural changes significantly varied in their abundance and frequency along the established environmental gradients. Out of 40 biological metrics based on the chironomid community, the multilayer perceptron (MLP), an supervised type of artificial neural network, derived 5 models in which the abundance of Paratrichocladius rufiventis, Orthocladiinae, Cricotopus spp., Cricotopus triannulatus agg. and Cricotopus/Orthocladius ratio achieved a significant relationship (the r Pearson's linear correlation coefficient>0.7) with the multi stressor environment. The sensitivity analysis "partial derivatives" (PaD) method showed that all 5 biological metrics within the multi-stressor gradient were mostly influenced by dissolved organic carbon (DOC). Despite short and monotonous environmental gradients and the absence of reference conditions, the chironomid community structure and biological metrics predictably changed along the multistress range, showing a great potential for the bioassessment of large rivers.


Subject(s)
Chironomidae , Environmental Monitoring , Rivers , Animals , Biodiversity , Ecosystem , Europe , Larva , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...