Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35745401

ABSTRACT

Three-dimensional printing offers a promising, challenging opportunity to manufacture component parts with ad hoc designed composite materials. In this study, the novelty of the research is the production of multiscale composites by means of a solvent-free process based on melt compounding of acrylonitrile-butadiene-styrene (ABS), with various amounts of microfillers, i.e., milled (M) carbon fibers (CFs) and nanofillers, i.e., carbon nanotubes (CNTs) or graphene nanoplatelets (GNPs). The compounded materials were processed into compression molded sheets and into extruded filaments. The latter were then used to print fused filament fabrication (FFF) specimens. The multiscale addition of the microfillers inside the ABS matrix caused a notable increase in rigidity and a slight increase in strength. However, it also brought about a significant reduction of the strain at break. Importantly, GNPs addition had a good impact on the rigidity of the materials, whereas CNTs favored/improved the composites' electrical conductivity. In particular, the addition of this nanofiller was very effective in improving the electrical conductivity compared to pure ABS and micro composites, even with the lowest CNT content. However, the filament extrusion and FFF process led to the creation of voids within the structure, causing a significant loss of mechanical properties and a slight improvement of the electrical conductivity of the printed multiscale composites. Selective parameters have been presented for the comparison and selection of compositions of multiscale nanocomposites.

2.
Polymers (Basel) ; 12(1)2020 Jan 04.
Article in English | MEDLINE | ID: mdl-31947971

ABSTRACT

The present work reports on the production and characterization of acrylonitrile butadiene styrene (ABS) hybrid nanocomposite filaments incorporating graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) suitable for fused filament fabrication (FFF). At first, nanocomposites with a total nanofiller content of GNP and/or CNT of 6 wt.% and a GNP/CNT relative percentage ratio of 0, 10, 30, 50, 70, and 100 were produced by melt compounding and compression molding. Their mechanical, electrical resistivity, and electromagnetic interference shielding effectiveness (EMI SE) properties were evaluated. The hybrid nanocomposites showed a linear increase in modulus and decrease in strength as a function of GNP content; on the other hand, the addition of CNT in hybrid nanocomposites determined a positive increase in electrical conductivity, but a potentially critical decrease of melt flow index. Due to the favorable compromise between processability and enhancement of performance (i.e., mechanical and electrical properties), the hybrid composition of 50:50 GNP/CNT was selected as the most suitable for the filament production of 6 wt.% carbonaceous nanocomposites. EMI SE of ABS-filled single CNT and hybrid GNP/CNT nanofillers obtained from compression molding reached the requirement for applications (higher than -20 dB), while slightly lower EMI SE values (in the range -12/-16 dB) were obtained for FFF parts dependent on the building conditions.

3.
Nanomaterials (Basel) ; 8(9)2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30158474

ABSTRACT

The effects of carbonaceous nanoparticles, such as graphene (GNP) and multiwall carbon nanotube (CNT) on the mechanical and electrical properties of acrylonitrile⁻butadiene⁻styrene (ABS) nanocomposites have been investigated. Samples with various filler loadings were produced by solvent free process. Composites ABS/GNP showed higher stiffness, better creep stability and processability, but slightly lower tensile strength and electrical properties (low conductivity) when compared with ABS/CNT nanocomposites. Tensile modulus, tensile strength and creep stability of the nanocomposite, with 6 wt % of GNP, were increased by 47%, 1% and 42%, respectively, while analogous ABS/CNT nanocomposite showed respective values of 23%, 12% and 20%. The electrical percolation threshold was achieved at 7.3 wt % for GNP and 0.9 wt % for CNT. The peculiar behaviour of conductive CNT nanocomposites was also evidenced by the observation of the Joule's effect after application of voltages of 12 and 24 V. Moreover, comparative parameters encompassing stiffness, melt flow and resistivity were proposed for a comprehensive evaluation of the effects of the fillers.

4.
Nanomaterials (Basel) ; 8(1)2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29346291

ABSTRACT

Composite acrylonitrile-butadiene-styrene (ABS)/carbon nanotubes (CNT) filaments at 1, 2, 4, 6 and 8 wt %, suitable for fused deposition modelling (FDM) were obtained by using a completely solvent-free process based on direct melt compounding and extrusion. The optimal CNT content in the filaments for FDM was found to be 6 wt %; for this composite, a detailed investigation of the thermal, mechanical and electrical properties was performed. Presence of CNT in ABS filaments and 3D-printed parts resulted in a significant enhancement of the tensile modulus and strength, accompanied by a reduction of the elongation at break. As documented by dynamic mechanical thermal analysis, the stiffening effect of CNTs in ABS is particularly pronounced at high temperatures. Besides, the presence of CNT in 3D-printed parts accounts for better creep and thermal dimensional stabilities of 3D-printed parts, accompanied by a reduction of the coefficient of thermal expansion). 3D-printed nanocomposite samples with 6 wt % of CNT exhibited a good electrical conductivity, even if lower than pristine composite filaments.

SELECTION OF CITATIONS
SEARCH DETAIL
...