Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 7(2): 345-354, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33655072

ABSTRACT

The maintenance of therapeutic glycoproteins within the circulatory system is associated, in large part, with the integrity of sialic acids as terminal sugars on the glycans. Glycoprotein desialylation, either by spontaneous cleavage or through host sialidases, leads to protein clearance, mainly through the liver. Thus, the installation of minimally modified sialic acids that are hydrolysis-resistant yet biologically equivalent should lead to increased circulatory half-lives and improved pharmacokinetic profiles. Here we describe the chemoenzymatic synthesis of CMP-sialic acid sugar donors bearing fluorine atoms at the 7-position, starting from the corresponding 4-deoxy-4-fluoro-N-acetylhexosamine precursors. For the derivative with natural stereochemistry we observe efficient glycosyl transfer by sialyltransferases, along with improved stability of the resultant 7-fluorosialosides toward spontaneous hydrolysis (3- to 5-fold) and toward cleavage by GH33 sialidases (40- to 250-fold). Taking advantage of the rapid transfer of 7-fluorosialic acid by sialyltransferases, we engineered the O-glycan of Interferon α-2b and the N-glycans of the therapeutic glycoprotein α1-antitrypsin. Studies of the uptake of the glyco-engineered α1-antitrypsin by HepG2 liver cells demonstrated the bioequivalence of 7-fluorosialic acid to sialic acid in suppressing interaction with liver cell lectins. In vivo pharmacokinetic studies reveal enhanced half-life of the protein decorated with 7-fluorosialic acid relative to unmodified sialic acid in the murine circulatory system. 7-Fluorosialylation therefore offers considerable promise as a means of prolonging circulatory half-lives of glycoproteins and may pave the way toward biobetters for therapeutic use.

2.
Cancer Inform ; 13: 167-77, 2014.
Article in English | MEDLINE | ID: mdl-25506199

ABSTRACT

High-throughput transcriptome sequencing allows identification of cancer-related changes that occur at the stages of transcription, pre-messenger RNA (mRNA), and splicing. In the current study, we devised a pipeline to predict novel alternative splicing (AS) variants from high-throughput transcriptome sequencing data and applied it to large sets of tumor transcriptomes from The Cancer Genome Atlas (TCGA). We identified two novel tumor-associated splice variants of matriptase, a known cancer-associated gene, in the transcriptome data from epithelial-derived tumors but not normal tissue. Most notably, these variants were found in 69% of lung squamous cell carcinoma (LUSC) samples studied. We confirmed the expression of matriptase AS transcripts using quantitative reverse transcription PCR (qRT-PCR) in an orthogonal panel of tumor tissues and cell lines. Furthermore, flow cytometric analysis confirmed surface expression of matriptase splice variants in chinese hamster ovary (CHO) cells transiently transfected with cDNA encoding the novel transcripts. Our findings further implicate matriptase in contributing to oncogenic processes and suggest potential novel therapeutic uses for matriptase splice variants.

4.
Bioorg Med Chem ; 22(5): 1708-25, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24508307

ABSTRACT

A novel series of bis-indoles derived from naturally occurring marine alkaloid 4 were synthesized and evaluated as inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase (PK). PK is not only critical for bacterial survival which would make it a target for development of novel antibiotics, but it is reported to be one of the most highly connected 'hub proteins' in MRSA, and thus should be very sensitive to mutations and making it difficult for the bacteria to develop resistance. From the co-crystal structure of cis-3-4-dihydrohamacanthin B (4) bound to S. aureus PK we were able to identify the pharmacophore needed for activity. Consequently, we prepared simple direct linked bis-indoles such as 10b that have similar anti-MRSA activity as compound 4. Structure-activity relationship (SAR) studies were carried out on 10b and led us to discover more potent compounds such as 10c, 10d, 10k and 10 m with enzyme inhibiting activities in the low nanomolar range that effectively inhibited the bacteria growth in culture with minimum inhibitory concentrations (MIC) for MRSA as low as 0.5 µg/ml. Some potent PK inhibitors, such as 10b, exhibited attenuated antibacterial activity and were found to be substrates for an efflux mechanism in S. aureus. Studies comparing a wild type S. aureus with a construct (S. aureus LAC Δpyk::Erm(R)) that lacks PK activity confirmed that bactericidal activity of 10d was PK-dependant.


Subject(s)
Methicillin-Resistant Staphylococcus aureus/chemistry , Pyruvate Kinase/antagonists & inhibitors , Pyruvate Kinase/therapeutic use , Humans , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Molecular Structure , Staphylococcal Infections/microbiology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...