Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 8: 210, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25885888

ABSTRACT

BACKGROUND: European hedgehogs (Erinaceus europaeus) are hosts for Ixodes hexagonus and I. ricinus ticks, which are vectors for zoonotic microorganisms. In addition, hedgehogs may carry several enteric zoonoses as well. It is unclear to what extent a presence of pathogens in hedgehogs poses a risk to public health, as information on the presence of zoonotic agents in hedgehogs in urban areas is relatively scarce. METHODS: Engorged ticks and hedgehog faeces were collected from rehabilitating hedgehogs. Ticks were screened individually for presence of Borrelia burgdorferi sensu lato, B. miyamotoi, Anaplasma phagocytophilum, and Candidatus Neoehrlichia mikurensis using PCR-based assays. Faecal samples were screened for presence of Campylobacter, Salmonella, Giardia, Cryptosporidium, and extended-spectrum cephalosporin-resistant-Escherichia coli (ESC)-resistant E. coli, using both culture-based and PCR-based methods. RESULTS: Anaplasma phagocytophilum and Borrelia genospecies B. afzelii, B. spielmanii, B. garinii, and B. burgdorferi sensu stricto were detected in both I. hexagonus and I. ricinus ticks. Despite their widespread distribution in the Netherlands, B. miyamotoi and Candidatus N. mikurensis were not detected in collected ticks. Analysis of hedgehog faecal samples revealed the presence of Salmonella enterica subspecies enterica and Campylobacter jejuni. In addition, ESC-resistant E. coli were observed in high prevalence in faecal samples, but no Shiga-toxin producing-E.coli were detected. Finally, potentially zoonotic protozoan parasites were observed in hedgehog faecal samples as well, including Giardia duodenalis assemblage A, Cryptosporidium parvum subtypes IIaA17G1R1 and IIcA5G3, and C. hominis subtype IbA10G2. CONCLUSIONS: European hedgehogs in (sub)urban areas harbor a number of zoonotic agents, and therefore may contribute to the spread and transmission of zoonotic diseases. The relatively high prevalence of B. burgdorferi s.l. and A. phagocytophilum in engorged ticks, suggests that hedgehogs contribute to their enzootic cycles in (sub)urban areas. To what extent can hedgehogs maintain the enteric zoonotic agents in natural cycles, and the role of (spill-back from) humans remains to be investigated.


Subject(s)
Feces/microbiology , Feces/parasitology , Hedgehogs/microbiology , Hedgehogs/parasitology , Ticks/microbiology , Animals , Cities/epidemiology , Microbiological Techniques , Netherlands/epidemiology , Polymerase Chain Reaction , Risk Assessment , Zoonoses/epidemiology
2.
Water Res ; 64: 296-308, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25086303

ABSTRACT

Zooplankton has been shown to transport internalized pathogens throughout engineered drinking water systems. In this study, experimental measurements from GAC and SSF filtration tests using high influent concentrations of Cryptosporidium (1.3 × 10(6) and 3.3 × 10(4) oocysts L(-1)) and Giardia (4.8 × 10(4) cysts L(-1)) are presented and compared. A predation and transport conceptual model was developed to extrapolate these results to environmental conditions of typical (oo)cyst concentrations in surface water in order to predict concentrations of internalized (oo)cysts in filtered water. Pilot test results were used to estimate transport and survival ratios of internalized (oo)cysts following predation by rotifers in the filter beds. Preliminary indications of lower transport and survival ratios in SSF were found as compared with GAC filters. A probability of infection due to internalized (oo)cysts in filtered water was calculated under likeliest environmental conditions and under a worst-case scenario. Estimated risks under the likeliest environmental scenario were found to fall below the tolerable risk target of 10(-4) infections per person per year. A discussion is presented on the health significance of persistent pathogens that are internalized by zooplankton during granular filtration processes and released into treated water.


Subject(s)
Cryptosporidium/isolation & purification , Drinking Water/microbiology , Drinking Water/parasitology , Filtration/methods , Giardia/isolation & purification , Rotifera/isolation & purification , Animals , Charcoal/chemistry , Cryptosporidium/growth & development , Fresh Water/microbiology , Fresh Water/parasitology , Giardia/growth & development , Oocysts/growth & development , Predatory Behavior , Water Purification/methods , Zooplankton/growth & development , Zooplankton/microbiology , Zooplankton/parasitology
3.
Water Res ; 47(7): 2592-602, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23490102

ABSTRACT

Slow sand filtration (SSF) in drinking water production removes pathogenic microorganisms, but detection limits and variable operational conditions complicate assessment of removal efficiency. Therefore, a model was developed to predict removal of human pathogenic viruses and bacteria as a function of the operational conditions. Pilot plant experiments were conducted, in which bacteriophage MS2 and Escherichia coli WR1 were seeded as model microorganisms for pathogenic viruses and bacteria onto the filters under various temperatures, flow rates, grain sizes and ages of the Schmutzdecke. Removal of MS2 was 0.082-3.3 log10 and that of E. coli WR1 0.94-4.5 log10 by attachment to the sand grains and additionally by processes in the Schmutzdecke. The contribution of the Schmutzdecke to the removal of MS2 and E. coli WR1 increased with its ageing, with sticking efficiency and temperature, decreased with grain size, and was modelled as a logistic growth function with scale factor f0 and rate coefficient f1. Sticking efficiencies were found to be microorganism and filter specific, but the values of f0 and f1 were independent of microorganism and filter. Cross-validation showed that the model can be used to predict log removal of MS2 and ECWR1 within ±0.6 log. Within the range of operational conditions, the model shows that removal of microorganisms is most sensitive to changes in temperature and age of the Schmutzdecke.


Subject(s)
Escherichia coli/isolation & purification , Filtration/methods , Levivirus/isolation & purification , Models, Theoretical , Silicon Dioxide/chemistry , Biodegradation, Environmental , Humans , Kinetics , Salts/chemistry , Sewage/chemistry , Temperature , Time Factors , Water Microbiology , Water Purification
4.
Water Res ; 44(4): 1072-81, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19853879

ABSTRACT

The significance of zooplankton in the transport and fate of pathogenic organisms in drinking water is poorly understood, although many hints of the role of predation in the persistence of microorganisms through water treatment processes can be found in literature. The objective of this study was to assess the impact of predation by natural zooplankton on the transport and fate of protozoan (oo)cysts in granular activated carbon (GAC) filtration process. UV-irradiated unlabelled Cryptosporidium parvum and Giardia lamblia (oo)cysts were seeded into two pilot-scale GAC filtration columns operated under full-scale conditions. In a two-week period after seeding, a reduction of free (oo)cysts retained in the filter bed was observed. Zooplankton was isolated from the filter bed and effluent water on a 30 microm net before and during the two-week period after seeding; it was enumerated and identified. Rotifers, which are potential predators of (oo)cysts, accounted for the major part of the isolated zooplankton. Analytical methods were developed to detect (oo)cysts internalized in natural zooplankton isolated from the filter bed and effluent water. Sample sonication was optimized to disrupt zooplankton organisms and release internalized microorganisms. (Oo)cysts released from zooplankton after sonication were isolated by IMS and stained (EasyStain) for microscopic counting. Both Cryptosporidium and Giardia (oo)cysts were detected in association with zooplankton in the filter bed samples as well as in the effluent of GAC filters. The results of this study suggest that predation by zooplankton can play a role in the remobilization of persistent pathogens such as Cryptosporidium and Giardia (oo)cysts retained in GAC filter beds, and consequently in the transmission of these pathogens in drinking water.


Subject(s)
Charcoal/chemistry , Cryptosporidium parvum/isolation & purification , Filtration/methods , Fresh Water/parasitology , Giardia lamblia/isolation & purification , Predatory Behavior , Zooplankton/growth & development , Animals , Cell Count , Cryptosporidium parvum/growth & development , Food Chain , Giardia lamblia/growth & development , Kinetics , Oocysts/growth & development , Water Purification/methods , Zooplankton/isolation & purification
5.
Water Res ; 41(10): 2151-62, 2007 May.
Article in English | MEDLINE | ID: mdl-17400275

ABSTRACT

The decimal elimination capacity (DEC) of slow sand filtration (SSF) for Cryptosporidium parvum was assessed to enable quantitative microbial risk analysis of a drinking water production plant. A mature pilot plant filter of 2.56m(2) was loaded with C. parvum oocysts and two other persistent organisms as potential surrogates; spores of Clostridium perfringens (SCP) and the small-sized (4-7microm) centric diatom (SSCD) Stephanodiscus hantzschii. Highly persistent micro-organisms that are retained in slow sand filters are expected to accumulate and eventually break through the filter bed. To investigate this phenomenon, a dosing period of 100 days was applied with an extended filtrate monitoring period of 150 days using large-volume sampling. Based on the breakthrough curves the DEC of the filter bed for oocysts was high and calculated to be 4.7log. During the extended filtrate monitoring period the spatial distribution of the retained organisms in the filter bed was determined. These data showed little risk of accumulation of oocysts in mature filters most likely due to predation by zooplankton. The DEC for the two surrogates, SCP and SSCD, was 3.6 and 1.8log, respectively. On basis of differences in transport behaviour, but mainly because of the high persistence compared to the persistence of oocysts, it was concluded that both spores of sulphite-reducing clostridia (incl. SCP) and SSCD are unsuited for use as surrogates for oocyst removal by slow sand filters. Further research is necessary to elucidate the role of predation in Cryptosporidium removal and the fate of consumed oocysts.


Subject(s)
Cryptosporidium parvum/isolation & purification , Diatoms/isolation & purification , Water Pollutants/isolation & purification , Adenosine Triphosphate/isolation & purification , Animals , Clostridium perfringens/isolation & purification , Silicon Dioxide , Water Microbiology , Zooplankton/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...