Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(20): 5109-5117, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38718191

ABSTRACT

In this study, we employed dielectric spectroscopy to investigate the effect of temperature and pressure on the ion dynamics of phosphonium ionic liquids (ILs) differing by the length of an alkyl chain, [P666,n][TFSI] (n = 2, 6, 8, 12). We found that both temperature and pressure dependence of dc-conductivity (σdc) determined for all examined ILs herein exhibit unique characteristics, unusual for aprotic ILs. Two regions differing by ion self-organization have been identified from the derivative analysis of σdc(T-1) data. On the other hand, isothermal measurements performed at elevated pressure revealed a unique concave-convex character of σdc(P) dependences, resulting in a clear minimum in the pressure behavior of activation volume. Such an inflection point characterizing the pressure dependence of σdc in [P666,n][TFSI] ILs can be considered an inherent feature of ion dynamics governed by structural self-assembly. Our results offer a unique perspective to link the ion mobility at various T-P conditions to the nanostructural organization of ionic systems.

2.
Sci Rep ; 12(1): 11950, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35831334

ABSTRACT

This work thoroughly investigates chemical solvent-particles interactions during the formation of composite particles by pulsed laser melting of α-Fe2O3. Two solvents, with different dielectric constants, such as ethyl acetate (εr = 6) and ethanol (εr = 24.6), were examined in terms of their effect on the morphology, size, and phase composition of iron oxide composites. We calculated the laser fluence curves using the heating-melting-evaporation approach to identify the critical particle size that undergoes the phase changes first. We assessed the temperature of the particles irradiated with 390 mJ/pulse.cm2 in both solvents, including the heat dissipation between the particles and the liquid. The phase diagram of the Fe-O-C-H system was calculated to determine the temperature-pressure relationship of the system in equilibrium. We also employed an in situ GC-MS analysis to identify the volatile products during irradiation. Based on our experimental results, we concluded that the final diameter of the composites increases from 400 to 600 nm, along with the decreasing dielectric constant of the solvent, which is related to the different polarization of the organic liquid and the degree of particle agglomeration. The reduction of hematite in ethanol proceeded much faster, ending up with Fe/FeCx, while in ethyl acetate, it ended up with Fe3O4. Among all the particles, those with a diameter of 200 nm have the highest temperature and undergo the phase transition first. The temperature of a 200 nm composite particle in ethanol is slightly lower than in ethyl acetate, i.e. 1870 K as compared to 1902 K. Phase equilibrium diagrams proved the existence of Fe, FeO, and Fe3O4 as the preferred phases at about 1900 K. Our research provides a new insight into the process of submicron particle formation during pulsed laser irradiation and allows proposing a mechanism for the growth of particles of different size and phase composition depending on the solvent.

3.
Eur J Pharm Sci ; 141: 105091, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31655208

ABSTRACT

In this paper, we studied the impact of saccharides having a similar backbone but differing in the degree of freedom, local molecular mobility, flexibility of the ring and intermolecular interactions on the glass-forming ability (GFA) of naproxen (NAP) in binary mixtures. For this purpose, a series of methyl and acetyl derivatives of glucose (GLS) and anhydroglucose (anhGLS), as well as neat anhGLS have been used to produce homogeneous solid dispersions (SDs) of varying molar concentration of examined active pharmaceutical ingredient (API). Systematic measurements with the use of Differential Scanning Calorimetry (DSC) and Broadband Dielectric Spectroscopy (BDS) enabled us to determine the phase transitions, homogeneity and molecular mobility of the investigated binary mixtures as well as the impact of excipient on the crystallization tendency of NAP. It turned out that acetylated glucose (acGLS), one of the most mobile and flexible saccharides of all examined herein materials, is the best excipient enhancing the GFA of studied API. Although, it should be noted that upon storage at room temperature, we observed the recrystallization of NAP from binary mixtures. Interestingly, API always crystallized to the initial polymorphic form, as shown by X-ray diffraction (XRD) investigations. Finally, since additional measurements with the use of Fourier Transform Infrared (FTIR) Spectroscopy clearly indicated that there are no significant differences in the intermolecular interactions in the systems composed of NAP and all examined saccharides, one can postulate that the mobility and ring flexibility of the matrix have, , the most important impact on the crystallization tendency of NAP upon cooling. Consequently, it seems that in some cases, more mobile/flexible matrices can be a much better choice to enhance the glass-forming ability of studied pharmaceutical.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Glass/chemistry , Glucose/analogs & derivatives , Glucose/chemistry , Naproxen/chemistry , Crystallization
4.
Mater Sci Eng C Mater Biol Appl ; 107: 110274, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31761190

ABSTRACT

Classical wet chemical synthesis was used to fabricate a hybrid composite that contained copper nanoparticles (average size ∼1 nm), which were embedded into a silicon oxide carrier. The structural and chemical alternations in the copper-functionalized silica were investigated in systems that were sintered at 573 K, 873 K, 1173 K, and 1473 K. A general trend, which was associated with the transformation of metallic copper with a cubic structure into copper(II) oxide with a monoclinic structure in the heat-treated systems, was found. XPS and FTIR spectroscopies also revealed the presence of copper(I) oxide, which formed a shell around the CuO. SEM and TEM showed gradual densification of the hybrid system at ever higher sintering temperatures, which corresponded with the gradual copper agglomeration. A temperature of 873 K was determined to be the temperature at which amorphous silica was transformed into cristoballite and tridymite, as well as the formation of a bulk-like copper structure. In relation to the physicochemical and structural data, high antimicrobial features that had a relatively low toxicity effect on the normal human fibroblasts (NHDF) below 250 mg/L was found for the initial copper-silica composite and the samples that were sintered at 573 K. In turn, a significant decrease in the biological impact was observed in the samples that were sintered at temperatures above 573 K. As a result, the paper discusses the model of structural modifications in copper-silica nanocomposite concerning their biological impact that was developed.


Subject(s)
Copper , Nanocomposites , Silicon Dioxide , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Bacteria/drug effects , Cell Survival/drug effects , Cells, Cultured , Copper/chemistry , Copper/toxicity , Hot Temperature , Humans , Nanocomposites/chemistry , Nanocomposites/toxicity , Particle Size , Silicon Dioxide/chemistry , Silicon Dioxide/toxicity
5.
Soft Matter ; 15(37): 7429-7437, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31468042

ABSTRACT

The vitrification process is usually preceded by a significant change (around 6-8 decades) in the viscosity, structural relaxation times, or diffusion that occurs in a relatively small range of temperatures in fragile liquids. Along with this phenomenon, conformations of the molecules vary as well. In fact, this process is studied in bulk polymers and high molecular weight materials deposited in the form of thin films. On the other hand, spatial rearrangement of small glass formers in the supercooled liquid state has not been intensively investigated, so far. Herein, data obtained from measurements carried out using various experimental techniques on supercooled 1,2,3,4,6-penta-O-(trimethylsilyl)-d-glucopyranose (S-GLU) have revealed that rotations of silyl moieties along with the deformation in the saccharide ring are significantly slowed down in the vicinity of the glass transition temperature (Tg). These intramolecular reorganizations affect the structural relaxation time, atomic pair distribution function, integrated intensity, as well as a number of bands and signals observed, respectively, in the Raman and NMR spectra. Data reported herein offer a better understanding of the conformational variation and time scale of this process in the complex and flexible molecules around the Tg.

6.
Colloids Surf B Biointerfaces ; 182: 110319, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31301581

ABSTRACT

The uniform thin films with variable thicknesses (d = 49, 120, 220 nm) of active pharmaceutical ingredient (API) glibenclamide (GCM) was spin-coated and investigated using broadband dielectric, grazing incident FTIR spectroscopies, atomic force microscopy, and ellipsometry. Data analysis revealed that nanoconfined systems consist of a mixture of amide and imidic acid forms of this pharmaceutical, wherein the ratios of both tautomeric forms in the thin films were different with respect to the molten supercooled bulk system. Moreover, changes in the populations of glibenclamide tautomers, i.e. higher amide to imides ratio in the spatially restricted API with respect to the bulk sample, had a strong impact on the character of the proton transfer reaction. In this context, the kinetic curves constructed on the base of infrared data for the bulk system follow the sigmoidal shape, characteristic for the autocatalytic reaction, while results obtained for the confined samples provide exponential character and indicate first-order transformation. This allows hypothesizing that the autocatalytic nature of the tautomerism in the bulk sample is most likely related to the formation of the amide tautomers which further catalyze the progress of imide-amide transformation. Our results are the first studies showing that the change in the thickness of the film may affect the properties and isomerization kinetics in a pharmaceutical systems. Finally, our data open a new perspective for developing new drug delivery systems.


Subject(s)
Amides/chemistry , Glyburide/chemistry , Hypoglycemic Agents/chemistry , Chemistry, Pharmaceutical , Humans , Isomerism , Kinetics , Microscopy, Atomic Force , Protons , Solutions , Spectroscopy, Fourier Transform Infrared , Surface Properties , Temperature
7.
Mater Sci Eng C Mater Biol Appl ; 103: 109790, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349451

ABSTRACT

In the last few decades, many nanostructures with varying properties and possible applications have been developed. These materials have been intended to work in various environmental temperature conditions. In this context, the main challenge has been to comprehend the impact of synergic interaction between individual elements included in non-annealed materials in relation to systems subjected to temperature impact. Another problem has corresponded to the impact of thermal modification on organisms such as bacteria and human cells. Such problems can be solved by the fabrication of a nanocomposite with mono-dispersed 8 nm silver (Ag0 or Ag+) embedded into a silica carrier, followed by the analysis of the impact of heat treatment under various temperature conditions on its physicochemical features. Therefore, methodical studies reported in this text have shown an increase of silver particle size up to 170 nm, a decrease of its concentration, as well as the formation of sub-nanometer Ag+ and/or Ag2+ clusters as the temperature rises to 1173 K. In turn, the structurally disordered silica carrier had been entirely transformed to cristobalite and tridymite only at 1473 K as well as partial reduction of Ag2+ to Ag+. Simultaneously, inhibition of growth of Gram-positive and Gram-negative bacteria, as well as an increase in cytotoxicity towards human cells was observed as the temperature rose. As a final point, for the first time, a "pseudo" phase diagram of the structural alterations in the Ag/SiO2 nanocomposite has been created, as well as a model of silver-silica transformation to biological systems has been developed.


Subject(s)
Nanocomposites/chemistry , Silicon Dioxide/chemistry , Silver/chemistry , Cell Line , Cell Survival/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hot Temperature , Humans , Microbial Sensitivity Tests , Nanocomposites/toxicity
8.
Sci Rep ; 8(1): 13593, 2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30206244

ABSTRACT

The mayenite group includes minerals with common formula Ca12Al14O32-x(OH)3x[W6-3x], where W = F, Cl, OH, H2O and x = 0-2. This distinction in the composition is associated with W site which may remain unoccupied or be occupied by negatively charged ions: OH-, F-, Cl-, as well as neutral molecules like H2O. However, there is no experimental approach to easily detect or differentiate mineral species within the mayenite group. Electron micro-beam facilities with energy- or wavelength-dispersive X-ray detectors, as most common tools in mineralogy, appear to be insufficient and do not provide a definite identification, especially, of hydroxylated or hydrated phases. Some solution provides typical Raman analysis ensuring identification of minerals and 3D Raman imaging as an innovative approach to distinguish various co-existing minerals of the mayenite group within a small area of the rock sample. Raman spectroscopy has also been successfully used for a determination of water type incorporated into the mineral structure as well as for a spatial distribution of phases by cluster approach analysis and/or integrated intensity analysis of bands in the hydroxyl region. In this study, Raman technique was for the first time used to reconstruct a 3D model of mayenite group mineral zonation, as well as to determine a way of water incorporation in the structure of these minerals. Moreover, for the first time, Raman data were correlated with alterations during the mineral-forming processes and used for reconstruction of the thermal history of studied rock. As a result, the influence of combustion gases has been proposed as a crucial factor responsible for the transformation between fluormayenite and fluorkyuygenite.

9.
J Chem Phys ; 148(22): 224505, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29907061

ABSTRACT

In this paper, the molecular dynamics of a series of ester derivatives of ibuprofen (IBU), in which the hydrogen atom from the hydroxyl group was substituted by the methyl, isopropyl, hexyl, and benzyl moieties, has been investigated using Broadband dielectric (BD), Nuclear magnetic resonance (NMR), and Raman spectroscopies. We found that except for benzyl IBU (Ben-IBU), an additional process (slow mode, SM) appears in dielectric spectra in all examined compounds. It is worth noting that this relaxation process was observed for the first time in non-modified IBU (a Debye relaxation). According to suggestions by Affouard and Correia [J. Phys. Chem. B. 114, 11397 (2010)] as well as further studies by Adrjanowicz et al. [J. Chem. Phys. 139, 111103 (2013)] on Met-IBU, it was attributed to synperiplanar-antiperiplanar conformational changes within the molecule. Herein, we have shown that with an increasing molecular weight of the substituent, the relaxation times of the SM become longer and its activation energy significantly increases. Moreover, this new relaxation mode was found to be broader than a simple Debye relaxation in Iso-IBU and Hex-IBU. Additional complementary NMR studies indicated that either there is a significant slowdown of the rotation around the O=C-O-R moiety or this kind of movement is completely suppressed in the case of Ben-IBU. Therefore, the SM is not observed in the dielectric loss spectra of this compound. Finally, we carried out isothermal experiments on the samples which have a different thermal history. Interestingly, it turned out that the relaxation times of the structural processes are slightly shorter with respect to those obtained from temperature dependent measurements. This effect was the most prominent in the case of Hex-IBU, while for Ben-IBU, it was not observed at all. Additional time-dependent measurements revealed the ongoing equilibration manifested by the continuous shift of the structural process, until it finally reached its equilibrium position. Further Raman investigations showed that this effect may be related to the rotational/conformational equilibration of the long hexyl chains. Our results are the first ones demonstrating that the structural process is sensitive to the conformational equilibration occurring in the specific highly viscous systems.

10.
Sci Rep ; 8(1): 5312, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29593302

ABSTRACT

Intra- and intermolecular studies on the molten L-sorbose have been carried out at variable temperature conditions to determine the crosover temperature (T c ). In addition, isothermal time-dependent FTIR and Raman measurements were performed to probe the pace of mutarotation and activation energy of this reaction in the studied saccharide, which varied from 53-62 kJ/mol up to 177-192 kJ/mol below and above T c , respectively. To explain the change in activation barrier for the mutarotation a complementary analysis using difference FTIR spectra collected around T c = 365 K in the hydroxyl region has been done. It was found that the alteration of kinetic parameters and molecular dynamics around T c are strictly related to the variation in the strength of H-bonds which above T c are significantly weaken, increasing the freedom of rotation of functional groups and movement of individual molecules. That phenomenon most likely affects the proton transfer, underlying molecular mechanism of mutarotation, which may lead to the significant increase in activation barrier. The new insight into a molecular aspect of the mutarotation around T c has created an opportunity to better understanding the relationship between physics of condensed matter and the potential role of H-bonds dynamics on the progress of the chemical reaction in highly viscous systems.

11.
Phys Chem Chem Phys ; 19(31): 20949-20958, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28745754

ABSTRACT

Comprehensive FTIR studies on the progress of mutarotation in d-fructose mixed with maltitol have been carried out over a wide range of temperatures, both above and below the glass transition temperature Tg. In addition to the analysis of single bands, we have developed a completely new approach considering the full spectral range to follow the overall progress of the reaction. We have found that at the calorimetric Tg, there is a clear change in the temperature dependence of constant rates. The activation barrier for mutarotation changes from around 59 kJ mol-1 (the supercooled state) to around 249 kJ mol-1 (the glassy state). This dramatic variation in the activation barrier is consistent with the change in the mechanism of this specific chemical conversion, as theoretically considered by Wlodarczyk et al. [Phys. Chem. Chem. Phys., 2014, 16, 4694-4698]. Alternatively, it can also be connected to the change in the viscosity of the sample. Additionally, we investigated the relationship between constant rates (k) of mutarotation, structural relaxation times (τα), and dc conductivity (σdc) above and below the glass transition temperature. It was found that there was a linear correlation between all these quantities; they scale with various exponents changing at Tg. Our results also indicate that a single activation barrier might not be sufficient to describe the mutarotation process.

12.
Mol Pharm ; 14(6): 2116-2125, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28489944

ABSTRACT

In this paper the crystal growth of nifedipine from pure system and from binary mixtures composed of active substance (API) and two acetylated disaccharides, maltose and sucrose (NIF-acMAL, NIF-acSUC, 5:1 weight ratio), was investigated. Optical snapshots supported by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) measurements showed that mainly ß and α forms of nifedipine grow up in all investigated samples. They also revealed that the morphology of growing crystals strongly depends on the presence of modified carbohydrates and temperature conditions. Interestingly, it was found that the activation barrier for the crystal growth of the ß polymorph is not affected by acetylated saccharides while the one estimated for the α form changes significantly from 48.5 kJ/mol (pure API) up to 122 kJ/mol (NIF-acMAL system). Moreover, the relationship between the crystal growth rate and structural relaxation times for pure NIF and solid dispersions were analyzed. It turned out that there is a clear decoupling between the crystal growth rate and structural dynamics in both NIF-acMAL and NIF-acSUC binary mixtures. This is in line with recent reports indicating the decoupling phenomenon to be a universal feature of soft matter in the close vicinity of the glass transition temperature.


Subject(s)
Crystallization/methods , Nifedipine/chemistry , Calorimetry, Differential Scanning , Molecular Dynamics Simulation , Solubility , Spectroscopy, Fourier Transform Infrared , Viscosity , X-Ray Diffraction
13.
J Chem Phys ; 143(18): 181102, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26567636

ABSTRACT

In this paper, we present results of dielectric and shear-mechanical studies for amine (2-ethyl-1-hexylamine) and thiol (2-ethyl-1-hexanethiol) derivatives of the monohydroxy alcohol, 2-ethyl-1-hexanol. The amine and thiol can form hydrogen bonds weaker in strength than those of the alcohol. The combination of dielectric and shear-mechanical data enables us to reveal the presence of a relaxation mode slower than the α-relaxation. This mode is analogous to the Debye mode seen in monohydroxy alcohols and demonstrates that supramolecular structures are present for systems with lower hydrogen bonding strength. We report some key features accompanying the decrease in the strength of the hydrogen bonding interactions on the relaxation dynamics close to the glass-transition. This includes changes (i) in the amplitude of the Debye and α-relaxations and (ii) the separation between primary and secondary modes.

14.
Mol Pharm ; 12(10): 3628-38, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26323061

ABSTRACT

The aim of this article is to examine the crystallization tendencies of three chemically related amorphous anti-inflammatory agents, etoricoxib, celecoxib, and rofecoxib. Since the molecular mobility is considered as one of the factors affecting the crystallization behavior of a given material, broadband dielectric spectroscopy was used to gain insight into the molecular dynamics of the selected active pharmaceutical ingredients. Interestingly, our experiments did not reveal any significant differences in their relaxation behavior either in the supercooled liquid or in the glassy state. Hence, as a possible explanation for the enhanced physical stability of etoricoxib, its ability to undergo a tautomerization reaction was recognized. The occurrence of intramolecular proton transfer in the disordered etoricoxib was proven experimentally by time-dependent dielectric and infrared (IR) measurements. Additionally, IR spectroscopy combined with density functional theory calculations pointed out that in the etoricoxib drug, being in fact a binary mixture of tautomers, the individual isomers may interact with each other through a hydrogen bonding network. A possible explanation of this issue was achieved by performing dielectric experiments at elevated pressure. Since compression results in etoricoxib recrystallization, the possible influence of pressure on the observed stabilization effect is also carefully discussed.


Subject(s)
Anti-Inflammatory Agents/chemistry , Celecoxib/chemistry , Drug Stability , Lactones/chemistry , Pyridines/chemistry , Sulfones/chemistry , Crystallization , Dielectric Spectroscopy , Etoricoxib
15.
Article in English | MEDLINE | ID: mdl-26382408

ABSTRACT

The origin of Debye-like relaxation in some hydrogen-bonded liquids is a matter of hot debate over the past decade. While a relatively clear picture of the issue has been established for monohydroxy alcohols, the Debye-type dynamics in other glass-forming systems still remains a not fully understood phenomenon. In this paper we present the results of dielectric measurements performed in the frequency interval 10(-1) to 10(9)Hz, both in the supercooled and normal liquid state of etoricoxib anti-inflammatory agent. Our investigations reveal the presence of slow Debye-like relaxation with features similar to that found for another active pharmaceutical ingredient, ibuprofen. Our results provide a fresh insight into the molecular nature of Debye-type relaxation in H-bonded pharmaceutically relevant materials and thus may stimulate the academic community for further discussion concerning the molecular dynamics of hydrogen-bonded fluids in general.


Subject(s)
Cyclooxygenase 2 Inhibitors/chemistry , Pyridines/chemistry , Sulfones/chemistry , Computer Simulation , Cyclooxygenase 2 Inhibitors/pharmacology , Dielectric Spectroscopy , Etoricoxib , Hydrogen Bonding , Ibuprofen/chemistry , Ibuprofen/pharmacology , Models, Chemical , Protons , Pyridines/pharmacology , Sulfones/pharmacology , Temperature
16.
Mol Pharm ; 12(8): 3007-19, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26101945

ABSTRACT

Molecular dynamics of pure nifedipine and its solid dispersions with modified carbohydrates as well as the crystallization kinetics of active pharmaceutical ingredient (API) above and below the glass transition temperature were studied in detail by means of broadband dielectric spectroscopy (BDS), differential scanning calorimetry (DSC), and X-ray diffraction method. It was found that the activation barrier of crystallization increases in molecular dispersions composed of acetylated disaccharides, whereas it slightly decreases in those consisting of modified monocarbohydrates for the experiments carried out above the glass transition temperature. As shown by molecular dynamics simulations it can be related to the strength, character, and structure of intermolecular interactions between API and saccharides, which vary dependently on the excipient. Long-term physical stability studies showed that, in solid dispersions consisting of acetylated maltose and acetylated sucrose, the crystallization of nifedipine is dramatically slowed down, although it is still observable for a low concentration of excipients. With increasing content of modified carbohydrates, the crystallization of API becomes completely suppressed. This is most likely due to additional barriers relating to the intermolecular interactions and diffusion of nifedipine that must be overcome to trigger the crystallization process.


Subject(s)
Carbohydrates/chemistry , Crystallization/methods , Molecular Dynamics Simulation , Nifedipine/chemistry , Calorimetry, Differential Scanning , Drug Stability , Excipients/chemistry , Kinetics , Solubility , Spectroscopy, Fourier Transform Infrared , Temperature , Transition Temperature , X-Ray Diffraction
17.
Eur J Pharm Biopharm ; 88(3): 1094-104, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25460155

ABSTRACT

Different experimental and theoretical techniques were applied to investigate basic physical properties of very stable and homogeneous solid dispersions formed by itraconazole and octaacetylmaltose. Differential scanning calorimetry as well as semi-empirical calculations have indicated that liquid crystalline ordering in itraconazole was completely suppressed in the binary mixtures. Molecular dynamics studies with the use of broadband dielectric spectroscopy have shown that the width of the structural relaxation process becomes smaller and fragility drops in solid dispersions with respect to the pure itraconazole. Moreover, the dynamics of secondary relaxation processes was affected by acetylated maltose. As demonstrated, ß- and γ-secondary modes shift to higher and lower frequencies, respectively. On the other hand, aging experiments revealed that isostructural relaxation times in the glassy state become systematically longer with the addition of modified carbohydrate. This is a very important finding in the context of the current discussion on the factors affecting physical stability of easily crystallizing APIs. It seems that beside intermolecular interactions and local reorientation, the global mobility might control the crystallization of amorphous solid dispersions. Finally, we have demonstrated that itraconazole in binary mixtures dissolves faster and to greater extent with respect to the crystalline and amorphous form of this API.


Subject(s)
Chemistry, Pharmaceutical/methods , Cold Temperature , Excipients/chemistry , Itraconazole/chemistry , Liquid Crystals/chemistry , Maltose/chemistry , Acetylation , Molecular Weight , X-Ray Diffraction
18.
Mol Pharm ; 11(8): 2935-47, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-25011022

ABSTRACT

Differential scanning calorimetry (DSC), broadband dielectric (BDS), and Fourier transform infrared (FTIR) spectroscopies as well as theoretical computations were applied to investigate inter- and intramolecular interactions between the active pharmaceutical ingredient (API) indomethacin (IMC) and a series of acetylated saccharides. It was found that solid dispersions formed by modified glucose and IMC are the least physically stable of all studied samples. Dielectric measurements showed that this finding is related to neither the global nor local mobility, as the two were fairly similar. On the other hand, combined studies with the use of density functional theory (DFT) and FTIR methods indicated that, in contrast to acetylated glucose, modified disaccharides (maltose and sucrose) interact strongly with indomethacin. As a result, internal H-bonds between IMC molecules become very weak or are eventually broken. Simultaneously, strong H-bonds between the matrix and API are formed. This observation was used to explain the physical stability of the investigated solid dispersions. Finally, solubility measurements revealed that the solubility of IMC can be enhanced by the use of acetylated carbohydrates, although the observed improvement is marginal due to strong interactions.


Subject(s)
Indomethacin/chemistry , Maltose/chemistry , Sucrose/chemistry , Blood Glucose/analysis , Calorimetry, Differential Scanning , Drug Stability , Gastrointestinal Tract/pathology , Glass , Humans , Hydrogen Bonding , Indomethacin/administration & dosage , Molecular Conformation , Solubility , Spectrophotometry , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared , Temperature , X-Ray Diffraction
19.
Pharm Res ; 31(10): 2887-903, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24831310

ABSTRACT

PURPOSE: To demonstrate a very effective and easy way of stabilization of amorphous indomethacin (IMC) by preparing binary mixtures with octaacetylmaltose (acMAL). In order to understand the origin of increased stability of amorphous system inter- and intramolecular interactions between IMC and acMAL were studied. METHODS: The amorphous IMC, acMAL and binary mixtures (IMC-acMAL) with different weight ratios were analyzed by using Dielectric Spectroscopy (DS), Differential Scanning Calorimetry (DSC), Raman Spectroscopy, X-ray Diffraction (XRD), Infrared Spectroscopy (FTIR) and Quantitative Structure-Activity Relationship (QSAR). RESULTS: Our studies have revealed that indomethacin mixed with acetylated saccharide forms homogeneous mixture. Interestingly, even a small amount of modified maltose prevents from recrystallization of amorphous indomethacin. FTIR measurements and QSAR calculations have shown that octaacetylmaltose significantly affects the concentration of indomethacin dimers. Moreover, with increasing the amount of acMAL in the amorphous solid dispersion molecular interactions between matrix and API become more dominant than IMC-IMC ones. Structural investigations with the use of X-ray diffraction technique have demonstrated that binary mixture of indomethacin with acMAL does not recrystallize upon storage at room temperature for more than 1.5 year. Finally, it was shown that acMAL can be used to improve solubility of IMC. CONCLUSIONS: Acetylated derivative of maltose might be very effective agent to improve physical stability of amorphous indomethacin as well as to enhance its solubility. Intermolecular interactions between modified carbohydrate and IMC are likely to be responsible for increased stability effect in the glassy state.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Excipients/chemistry , Glucans/chemistry , Indomethacin/chemistry , Calorimetry, Differential Scanning , Crystallization , Dielectric Spectroscopy , Drug Stability , Molecular Dynamics Simulation , Molecular Structure , Phase Transition , Quantitative Structure-Activity Relationship , Solubility , Spectrum Analysis, Raman , Surface Properties
20.
Mol Pharm ; 10(10): 3612-27, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24070615

ABSTRACT

This study for the first time investigates physicochemical properties of amorphous indapamide drug (IND), which is a known diuretic agent commonly used in the treatment of hypertension. The solid-state properties of the vitrified, cryomilled and ball-milled IND samples were analyzed using X-ray powder diffraction (XRD), mass spectrometry, nuclear magnetic resonance (NMR), infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). These analytical techniques enabled us (i) to confirm the purity of obtained amorphous samples, (ii) to describe the molecular mobility of IND in the liquid and glassy state, (iii) to determine the parameters describing the liquid-glass transition i.e. Tg and dynamic fragility, (iv) to test the chemical stability of amorphous IND in various temperature conditions and finally (v) to confirm the long-term physical stability of the amorphous samples. These studies were supplemented by density functional theory (DFT) calculations and apparent solubility studies of the amorphous IND in 0.1 M HCl, phosphate buffer (pH=6.8), and water (25 and 37 °C).


Subject(s)
Indapamide/chemistry , Calorimetry, Differential Scanning , Diuretics/chemistry , Drug Stability , Molecular Dynamics Simulation , Solubility , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...