Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Bioorg Med Chem Lett ; 16(10): 2817-21, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16517161

ABSTRACT

2-(4-Fluorophenyl)-3-(4-pyridinyl)-5-substituted pyrroles were prepared and evaluated as anticoccidial agents in both in vitro and in vivo assays. Among the compounds evaluated, the dimethylamine-substituted pyrrole 19a is the most potent inhibitor of Eimeria tenella PKG (cGMP-dependent protein kinase). Further SAR studies on the side chain of the 2-pyrrolidine nitrogen did not enhance in vivo anticoccidial activity.


Subject(s)
Coccidiostats/chemical synthesis , Coccidiostats/pharmacology , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Animals , Coccidiostats/chemistry , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Eimeria tenella/drug effects , Eimeria tenella/enzymology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrroles/chemistry , Structure-Activity Relationship
3.
Assay Drug Dev Technol ; 4(1): 37-48, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16506887

ABSTRACT

Clinical treatment of neuropathic pain can be achieved with a number of different drugs, some of which interact with all members of the voltage-gated sodium channel (NaV1) family. However, block of central nervous system and cardiac NaV1 channels can cause dose-limiting side effects, preventing many patients from achieving adequate pain relief. Expression of the tetrodotoxin-resistant NaV1.8 subtype is restricted to small-diameter sensory neurons, and several lines of evidence indicate a role for NaV1.8 in pain processing. Given these features, NaV1.8 subtype-selective blockers are predicted to be efficacious in the treatment of neuropathic pain and to be associated with fewer adverse effects than currently available therapies. To facilitate the identification of NaV1.8-specific inhibitors, we stably expressed the human NaV1.8 channel together with the auxiliary human beta1 subunit (NaV beta1) in human embryonic kidney 293 cells. Heterologously expressed human NaV1.8/NaV beta1 channels display biophysical properties that are similar to those of tetrodotoxin-resistant channels present in mouse dorsal root ganglion neurons. A membrane potential, fluorescence resonance energy transfer-based functional assay on a fluorometric imaging plate reader (FLIPR-Tetra, Molecular Devices, Sunnyvale, CA) platform has been established. This highcapacity assay is sensitive to known state-dependent NaV1 modulators and can be used to identify novel and selective NaV1.8 inhibitors.


Subject(s)
Membrane Potentials/physiology , Neurons, Afferent/physiology , Sodium Channels/physiology , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Cloning, Molecular , DNA Primers , Electrophysiology/methods , Fluorescence Resonance Energy Transfer/methods , Humans , Kidney , Models, Molecular , Molecular Sequence Data , NAV1.8 Voltage-Gated Sodium Channel , Peptide Fragments/immunology , Protein Conformation , Rabbits , Sodium Channels/genetics
4.
Diabetes ; 55(4): 1034-42, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16567526

ABSTRACT

Delayed-rectifier K+ currents (I(DR)) in pancreatic beta-cells are thought to contribute to action potential repolarization and thereby modulate insulin secretion. The voltage-gated K+ channel, K(V)2.1, is expressed in beta-cells, and the biophysical characteristics of heterologously expressed channels are similar to those of I(DR) in rodent beta-cells. A novel peptidyl inhibitor of K(V)2.1/K(V)2.2 channels, guangxitoxin (GxTX)-1 (half-maximal concentration approximately 1 nmol/l), has been purified, characterized, and used to probe the contribution of these channels to beta-cell physiology. In mouse beta-cells, GxTX-1 inhibits 90% of I(DR) and, as for K(V)2.1, shifts the voltage dependence of channel activation to more depolarized potentials, a characteristic of gating-modifier peptides. GxTX-1 broadens the beta-cell action potential, enhances glucose-stimulated intracellular calcium oscillations, and enhances insulin secretion from mouse pancreatic islets in a glucose-dependent manner. These data point to a mechanism for specific enhancement of glucose-dependent insulin secretion by applying blockers of the beta-cell I(DR), which may provide advantages over currently used therapies for the treatment of type 2 diabetes.


Subject(s)
Delayed Rectifier Potassium Channels/physiology , Glucose/pharmacology , Insulin/metabolism , Islets of Langerhans/physiology , Potassium Channel Blockers/pharmacology , Amino Acid Sequence , Animals , Delayed Rectifier Potassium Channels/drug effects , Insulin Secretion , Islets of Langerhans/drug effects , Kinetics , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Molecular Sequence Data , Peptides/chemistry , Peptides/pharmacology , Potassium Channel Blockers/chemistry , Spider Venoms/chemistry , Spider Venoms/pharmacology
5.
Bioorg Med Chem Lett ; 15(20): 4570-3, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16087336

ABSTRACT

Diaryl-(4-piperidinyl)-pyrrole derivatives bearing hydroxylated N-alkyl substituents have been synthesized and evaluated as anticoccidial agents. High potency in Et-PKG inhibition and broad-spectrum anticoccidial activities have been observed on compounds, such as 4b and 5h, which are fully efficacious in vivo at 50 ppm in feed.


Subject(s)
Coccidiostats/chemistry , Coccidiostats/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Hydroxylation , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 15(13): 3296-301, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15922595

ABSTRACT

Several analogs of 2,3-diaryl pyrroles were synthesized and evaluated as inhibitors of Eimeria tenella cGMP-dependent protein kinase and in in vivo anticoccidial assays. A 4-fluorophenyl group enhances both in vitro and in vivo activities. The most potent analogs are the 5-(N-methyl, N-ethyl, and N-methylazetidine methyl) piperidyl derivatives 12, 23, and 34. These compounds have a broad spectrum of activity. Based on the in vivo efficacy and cost of synthesis, the N-ethyl analog 23 was chosen as a novel anticoccidial agent for a field trial.


Subject(s)
Coccidiostats/chemical synthesis , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Pyrroles/chemical synthesis , Animals , Biological Availability , Chickens , Coccidiosis/drug therapy , Coccidiostats/pharmacokinetics , Coccidiostats/pharmacology , Eimeria , Half-Life , Inhibitory Concentration 50 , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Structure-Activity Relationship
7.
Mol Pharmacol ; 67(5): 1513-21, 2005 May.
Article in English | MEDLINE | ID: mdl-15709110

ABSTRACT

Voltage-gated potassium (Kv) channels regulate many physiological functions and represent important therapeutic targets in the treatment of several clinical disorders. Although some of these channels have been well-characterized, the study of others, such as Kv3 channels, has been hindered because of limited pharmacological tools. The current study was initiated to identify potent blockers of the Kv3.2 channel. Chinese hamster ovary (CHO)-K1 cells stably expressing human Kv3.2b (CHO-K1.hKv3.2b) were established and characterized. Stichodactyla helianthus peptide (ShK), isolated from S. helianthus venom and a known high-affinity blocker of Kv1.1 and Kv1.3 channels, was found to potently inhibit 86Rb+ efflux from CHO-K1.hKv3.2b (IC50 approximately 0.6 nM). In electrophysiological recordings of Kv3.2b channels expressed in Xenopus laevis oocytes or in planar patch-clamp studies, ShK inhibited hKv3.2b channels with IC50 values of approximately 0.3 and 6 nM, respectively. Despite the presence of Kv3.2 protein in human pancreatic beta cells, ShK has no effect on the Kv current of these cells, suggesting that it is unlikely that homotetrameric Kv3.2 channels contribute significantly to the delayed rectifier current of insulin-secreting cells. In mouse cortical GABAergic fast-spiking interneurons, however, application of ShK produced effects consistent with the blockade of Kv3 channels (i.e., an increase in action potential half-width, a decrease in the amplitude of the action potential after hyperpolarization, and a decrease in maximal firing frequency in response to depolarizing current injections). Taken together, these results indicate that ShK is a potent inhibitor of Kv3.2 channels and may serve as a useful pharmacological probe for studying these channels in native preparations.


Subject(s)
Cnidarian Venoms/pharmacology , Peptide Fragments/pharmacology , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Potassium Channels, Voltage-Gated/biosynthesis , Animals , CHO Cells , Cnidarian Venoms/isolation & purification , Cricetinae , Dose-Response Relationship, Drug , Female , Humans , In Vitro Techniques , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Mice , Peptide Fragments/isolation & purification , Potassium Channel Blockers/isolation & purification , Potassium Channel Blockers/pharmacology , Sea Anemones , Shaw Potassium Channels
8.
Protein Expr Purif ; 38(1): 69-78, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15477084

ABSTRACT

BgK, a sea anemone peptide consisting of 37 amino acid residues and 3 disulfide bonds, blocks voltage-gated potassium (Kv1) channels. Here, we report a method for producing tagged BgK in Escherichia coli, as a soluble cytoplasmic protein. First, using peptidic synthesis, we show that addition of a 15 residue peptide (S.Tag) at the BgK C-terminus does not affect its biological activity. Then, a synthetic DNA sequence encoding BgK was constructed and cloned to produce a BgK-S.Tag hybrid in the cytoplasm of E. coli. The presence of S.Tag did not only facilitate detection, quantification, and purification of the recombinant protein, but also increased the production yield by more than two orders of magnitude. Moreover, use of an E. coli OrigamiB(DE3)pLacI strain also increased production; up to 5.8-7.5mg of BgK-S.Tag or mutated BgK(F6A)-S.Tag was produced per liter of culture and could be functionally characterized in crude extracts. Using a two-step purification procedure (affinity chromatography and RP-HPLC), we obtained 1.8-2.8mg of purified recombinant protein per liter of culture. The recombinant peptides displayed functional properties similar to those of native BgK or BgK(F6A).


Subject(s)
Cnidarian Venoms/biosynthesis , Cytoplasm/metabolism , Escherichia coli/metabolism , Potassium Channel Blockers/metabolism , Sea Anemones/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Electrophysiology , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification
9.
J Biol Chem ; 277(18): 15913-22, 2002 May 03.
Article in English | MEDLINE | ID: mdl-11834729

ABSTRACT

The trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl]pyridine (Compound 1) inhibits the growth of Eimeria spp. both in vitro and in vivo. The molecular target of Compound 1 was identified as cGMP-dependent protein kinase (PKG) using a tritiated analogue to purify a approximately 120-kDa protein from lysates of Eimeria tenella. This represents the first example of a protozoal PKG. Cloning of PKG from several Apicomplexan parasites has identified a parasite signature sequence of nearly 300 amino acids that is not found in mammalian or Drosophila PKG and which contains an additional, third cGMP-binding site. Nucleotide cofactor regulation of parasite PKG is remarkably different from mammalian enzymes. The activity of both native and recombinant E. tenella PKG is stimulated 1000-fold by cGMP, with significant cooperativity. Two isoforms of the parasite enzyme are expressed from a single copy gene. NH(2)-terminal sequence of the soluble isoform of PKG is consistent with alternative translation initiation within the open reading frame of the enzyme. A larger, membrane-associated isoform corresponds to the deduced full-length protein sequence. Compound 1 is a potent inhibitor of both soluble and membrane-associated isoforms of native PKG, as well as recombinant enzyme, with an IC(50) of <1 nm.


Subject(s)
Apicomplexa/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Eimeria tenella/enzymology , Amino Acid Sequence , Animals , Apicomplexa/classification , Apicomplexa/genetics , Binding Sites , Chickens/parasitology , Cloning, Molecular , Cyclic GMP-Dependent Protein Kinase Type I , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/isolation & purification , DNA, Complementary/genetics , DNA, Protozoan/genetics , Humans , Ligands , Mammals , Molecular Sequence Data , Peptide Chain Initiation, Translational , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...