Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 247
Filter
1.
Transl Psychiatry ; 14(1): 90, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346984

ABSTRACT

Recent studies have implicated the endogenous opioid system in the antidepressant actions of ketamine, but the underlying mechanisms remain unclear. We used a combination of pharmacological, behavioral, and molecular approaches in rats to test the contribution of the prefrontal endogenous opioid system to the antidepressant-like effects of a single dose of ketamine. Both the behavioral actions of ketamine and their molecular correlates in the medial prefrontal cortex (mPFC) are blocked by acute systemic administration of naltrexone, a competitive opioid receptor antagonist. Naltrexone delivered directly into the mPFC similarly disrupts the behavioral effects of ketamine. Ketamine treatment rapidly increases levels of ß-endorphin and the expression of the µ-opioid receptor gene (Oprm1) in the mPFC, and the expression of gene that encodes proopiomelanocortin, the precursor of ß-endorphin, in the hypothalamus, in vivo. Finally, neutralization of ß-endorphin in the mPFC using a specific antibody prior to ketamine treatment abolishes both behavioral and molecular effects. Together, these findings indicate that presence of ß-endorphin and activation of opioid receptors in the mPFC are required for the antidepressant-like actions of ketamine.


Subject(s)
Ketamine , Rats , Animals , Analgesics, Opioid/pharmacology , beta-Endorphin/metabolism , beta-Endorphin/pharmacology , Naltrexone/pharmacology , Naltrexone/metabolism , Antidepressive Agents , Prefrontal Cortex/metabolism
2.
Neuropsychopharmacol Rep ; 44(1): 246-249, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37960997

ABSTRACT

Vascular endothelial growth factor (VEGF) signaling is known to be involved in the antidepressant-like effects of conventional antidepressants, such as desipramine (DMI), a tricyclic antidepressant, and fluoxetine (FLX), a selective serotonin reuptake inhibitor; however, the precise role of neuronal VEGF signaling in mediating these effects remains unclear. Using mice with excitatory neuron-specific deletion of VEGF and its receptor, fetal liver kinase 1 (Flk-1) in the forebrain, we examined the effects of forebrain excitatory neuron-specific deletion of VEGF or Flk-1 on the antidepressant-like effects of repeated DMI and chronic FLX administration in the forced swim test (FST). Repeated intraperitoneal (i.p.) injections of DMI (10, 10, and 20 mg/kg at 24, 4, and 1 h before the FST, respectively) significantly decreased immobility in control mice; however, this effect was completely blocked in mice with neuron-specific VEGF or Flk-1 deletion. Although chronic treatment with FLX (18 mg/kg/day, i.p.) did not impact immobility in control mice 1 day after the 22nd injection, immobility was significantly reduced 1 day after the preswim and the 23rd FLX injection. However, in mice with neuron-specific Flk-1 deletion, chronic FLX treatment significantly increased immobility in the preswim and failed to produce antidepressant-like effects. Collectively, these findings indicate that neuronal VEGF-Flk-1 signaling contributes to the antidepressant-like actions of conventional antidepressants.


Subject(s)
Fluoxetine , Vascular Endothelial Growth Factor A , Mice , Animals , Fluoxetine/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Desipramine/metabolism , Desipramine/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/pharmacology , Antidepressive Agents/pharmacology , Neurons/metabolism
3.
Neuropsychopharmacology ; 48(9): 1277-1287, 2023 08.
Article in English | MEDLINE | ID: mdl-37142667

ABSTRACT

Alterations in glutamatergic and GABAergic function in the medial prefrontal cortex (mPFC) are prevalent in individuals with major depressive disorder, resulting in impaired synaptic plasticity that compromises the integrity of signal transfer to limbic regions. Scopolamine, a non-selective muscarinic receptor antagonist, produces rapid antidepressant-like effects by targeting M1-type acetylcholine receptors (M1R) on somatostatin (SST) interneurons. So far, these effects have been investigated with relatively short-term manipulations, and long-lasting synaptic mechanisms involved in these responses are still unknown. Here, we generated mice with conditional deletion of M1R (M1f/fSstCre+) only in SST interneurons to determine the role of M1R in modulating long-term GABAergic and glutamatergic plasticity in the mPFC that leads to attenuation of stress-relevant behaviors. We have also investigated whether the molecular and antidepressant-like effects of scopolamine could be mimicked or occluded in male M1f/fSstCre+ mice. M1R deletion in SST-expressing neurons occluded the rapid and sustained antidepressant-like effects of scopolamine, as well as scopolamine-induced increases in c-Fos+/CaMKIIα cells and proteins necessary for glutamatergic and GABAergic function in the mPFC. Importantly, M1R SST deletion resulted in resilience to chronic unpredictable stress in behaviors relevant to coping strategies and motivation, and to a lesser extent, in behaviors relevant to avoidance. Finally, M1R SST deletion also prevented stress-induced impairments in the expression of GABAergic and glutamatergic markers in the mPFC. These findings suggest that the antidepressant-like effects of scopolamine result from modulation of excitatory and inhibitory plasticity via M1R blockade in SST interneurons. This mechanism could represent a promising strategy for antidepressant development.


Subject(s)
Depressive Disorder, Major , Mice , Male , Animals , Depressive Disorder, Major/drug therapy , Interneurons/physiology , Antidepressive Agents/therapeutic use , Scopolamine/pharmacology , Receptors, Cholinergic/metabolism , Receptors, Cholinergic/therapeutic use , Somatostatin/metabolism , Prefrontal Cortex
4.
Int J Neuropsychopharmacol ; 26(4): 294-306, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36879414

ABSTRACT

BACKGROUND: Electroconvulsive seizure therapy is often used in both treatment-resistant and geriatric depression. However, preclinical studies identifying targets of chronic electroconvulsive seizure (ECS) are predominantly focused on animal models in young adulthood. Given that putative transcriptional, neurogenic, and neuroplastic mechanisms implicated in the behavioral effects of chronic ECS themselves exhibit age-dependent modulation, it remains unknown whether the molecular and cellular targets of chronic ECS vary with age. METHODS: We subjected young adult (2-3 months) and middle-aged (12-13 months), male Sprague Dawley rats to sham or chronic ECS and assessed for despair-like behavior, hippocampal gene expression, hippocampal neurogenesis, and neuroplastic changes in the extracellular matrix, reelin, and perineuronal net numbers. RESULTS: Chronic ECS reduced despair-like behavior at both ages, accompanied by overlapping and unique changes in activity-dependent and trophic factor gene expression. Although chronic ECS had a similar impact on quiescent neural progenitor numbers at both ages, the eventual increase in hippocampal progenitor proliferation was substantially higher in young adulthood. We noted a decline in reelin⁺ cell numbers following chronic ECS only in young adulthood. In contrast, an age-invariant, robust dissolution of perineuronal net numbers that encapsulate parvalbumin⁺ neurons in the hippocampus were observed following chronic ECS. CONCLUSION: Our findings indicate that age is a key variable in determining the nature of chronic ECS-evoked molecular and cellular changes in the hippocampus. This raises the intriguing possibility that chronic ECS may recruit distinct, as well as overlapping, mechanisms to drive antidepressant-like behavioral changes in an age-dependent manner.


Subject(s)
Electroconvulsive Therapy , Hippocampus , Rats , Animals , Male , Rats, Sprague-Dawley , Electroshock , Seizures/metabolism , Gene Expression
5.
Nat Neurosci ; 25(9): 1191-1200, 2022 09.
Article in English | MEDLINE | ID: mdl-36042309

ABSTRACT

We show that the sex of human experimenters affects mouse behaviors and responses following administration of the rapid-acting antidepressant ketamine and its bioactive metabolite (2R,6R)-hydroxynorketamine. Mice showed aversion to the scent of male experimenters, preference for the scent of female experimenters and increased stress susceptibility when handled by male experimenters. This human-male-scent-induced aversion and stress susceptibility was mediated by the activation of corticotropin-releasing factor (CRF) neurons in the entorhinal cortex that project to hippocampal area CA1. Exposure to the scent of male experimenters before ketamine administration activated CA1-projecting entorhinal cortex CRF neurons, and activation of this CRF pathway modulated in vivo and in vitro antidepressant-like effects of ketamine. A better understanding of the specific and quantitative contributions of the sex of human experimenters to study outcomes in rodents may improve replicability between studies and, as we have shown, reveal biological and pharmacological mechanisms.


Subject(s)
Behavior, Animal , Ketamine , Research Personnel , Sex Characteristics , Animals , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Corticotropin-Releasing Hormone/metabolism , Female , Hippocampus/metabolism , Humans , Ketamine/pharmacology , Male , Mice , Neurons/metabolism
6.
Mol Psychiatry ; 27(5): 2580-2589, 2022 05.
Article in English | MEDLINE | ID: mdl-35418600

ABSTRACT

N-methyl-D-aspartate receptor (NMDAR) modulators have recently received increased attention as potential therapeutics for posttraumatic stress disorder (PTSD). Here, we tested a novel NMDAR-positive modulator, NYX-783, in the following two rodent models of PTSD: an auditory fear-conditioning model and a single-prolonged stress (SPS) model. We examined the ability of NYX-783 to reduce subsequent fear-based behaviors by measuring enhanced fear extinction and reduced spontaneous recovery (spontaneous return of fear) in male mice. NYX-783 administration significantly reduced spontaneous recovery in both PTSD models and enhanced fear extinction in the SPS model. Furthermore, NYX-783 increased the NMDA-induced inward currents of excitatory and inhibitory neurons in the infralimbic medial prefrontal cortex (IL mPFC) and that the GluN2B subunit of NMDARs on pyramidal neurons in the IL mPFC is required for its effect on spontaneous recovery. The downstream expression of brain-derived neurotrophic factor was required for NYX-783 to achieve its behavioral effect. These results elucidate the cellular targets of NYX-783 and the molecular mechanisms underlying the inhibition of spontaneous recovery. These preclinical findings support the hypothesis that NYX-783 may have therapeutic potential for PTSD treatment and may be particularly useful for inhibiting spontaneous recovery.


Subject(s)
Fear , Receptors, N-Methyl-D-Aspartate , Animals , Extinction, Psychological/physiology , Fear/physiology , Male , Mice , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism
7.
J Affect Disord ; 303: 91-97, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35101523

ABSTRACT

Suicide is a public health crisis with limited treatment options. Ketamine has demonstrated rapid and robust improvements in suicidal ideation (SI). The parent study for the secondary pilot analyses presented here was a double-blind, cross-over trial that found pretreatment with the mechanistic target of rapamycin complex 1 (mTORC1) prolonged the antidepressant effects of ketamine. Here we examined the effect of mTORC1 inhibition on ketamine's antisuicidal effects. Twenty patients in a major depressive episode were randomized to pretreatment with oral rapamycin (6 mg) or placebo prior to IV ketamine (0.5 mg/kg). We found ketamine administration resulted in significant improvements across all measures with the largest effect at 24 h with only the Beck Scale for Suicide remaining significant at the two-week follow-up. There were no significant main effects of pretreatment. While these analyses are pilot in nature and overall severity of SI was relatively low, the antisuicidal findings (no effect of rapamycin) being in contrast to the antidepressant effects (prolonged effect with rapamycin), suggest the rapid-acting antisuicidal and antidepressant effects of ketamine may be mechanistically distinct and the trajectories of response, recovery, and relapse may be independent. These findings provide additional evidence of ketamine's antisuicidal effects and highlight the importance of future studies that continue to examine potential differences in mechanisms and trajectory of outcomes.


Subject(s)
Depressive Disorder, Major , Ketamine , Antidepressive Agents/adverse effects , Depression/drug therapy , Depressive Disorder, Major/drug therapy , Humans , Ketamine/adverse effects , Mechanistic Target of Rapamycin Complex 1 , Sirolimus/adverse effects , Suicidal Ideation
8.
Transl Psychiatry ; 12(1): 65, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177594

ABSTRACT

Posttraumatic stress disorder (PTSD) is a chronic and disabling psychiatric disorder prevalent in military veterans. Epigenetic mechanisms have been implicated in the etiology of PTSD, with DNA methylation being the most studied to identify novel molecular biomarkers associated with this disorder. We performed one of the largest single-sample epigenome-wide association studies (EWAS) of PTSD to date. Our sample included 1135 male European-American U.S. veterans who participated in the National Health and Resilience in Veterans Study (NHRVS). DNA was collected from saliva samples and the Illumina HumanMethylation EPIC BeadChip was used for the methylation analysis. PTSD was assessed using the PTSD Checklist. An EWAS was conducted using linear regression adjusted for age, cell-type proportions, first 10 principal components, and smoking status. After Bonferroni correction, we identified six genome-wide significant (GWS) CpG sites associated with past-month PTSD and three CpGs with lifetime PTSD (prange = 10-10-10-8). These CpG sites map to genes involved in immune function, transcription regulation, axonal guidance, cell signaling, and protein binding. Among these, SENP7, which is involved in transcription regulation and has been linked to risk-taking behavior and alcohol consumption in genome-wide association studies, replicated in an independent veteran cohort and was downregulated in medial orbitofrontal cortex of PTSD postmortem brain tissue. These findings suggest potential epigenetic biomarkers of PTSD that may help inform the pathophysiology of this disorder in veterans and other trauma-affected populations.


Subject(s)
Stress Disorders, Post-Traumatic , Veterans , DNA Methylation , Epigenome , Genome-Wide Association Study , Humans , Male , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/psychology
9.
Mol Psychiatry ; 27(4): 2273-2281, 2022 04.
Article in English | MEDLINE | ID: mdl-35165397

ABSTRACT

The discovery of ketamine as a rapid and robust antidepressant marks the beginning of a new era in the treatment of psychiatric disorders. Ketamine is thought to produce rapid and sustained antidepressant effects through restoration of lost synaptic connections. We investigated this hypothesis in humans for the first time using positron emission tomography (PET) and [11C]UCB-J-a radioligand that binds to the synaptic vesicle protein 2A (SV2A) and provides an index of axon terminal density. Overall, we did not find evidence of a measurable effect on SV2A density 24 h after a single administration of ketamine in non-human primates, healthy controls (HCs), or individuals with major depressive disorder (MDD) and/or posttraumatic stress disorder (PTSD), despite a robust reduction in symptoms. A post-hoc, exploratory analysis suggests that patients with lower SV2A density at baseline may exhibit increased SV2A density 24 h after ketamine. This increase in SV2A was associated with a reduction in depression severity, as well as an increase in dissociative symptoms. These initial findings suggest that a restoration of synaptic connections in patients with lower SV2A at baseline may underlie ketamine's therapeutic effects, however, this needs replication in a larger sample. Further work is needed to build on these initial findings and further establish the nuanced pre- and post-synaptic mechanisms underpinning ketamine's therapeutic effects.


Subject(s)
Depressive Disorder, Major , Ketamine , Animals , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Brain/diagnostic imaging , Brain/metabolism , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Humans , Ketamine/metabolism , Ketamine/pharmacology , Macaca mulatta/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Positron-Emission Tomography/methods
10.
Biochem Pharmacol ; 190: 114617, 2021 08.
Article in English | MEDLINE | ID: mdl-34023293

ABSTRACT

Clinical reports indicate a bidirectional relationship between mental illness and chronic systemic diseases. However, brain mechanisms linking chronic stress and development of mood disorders to accompanying peripheral organ dysfunction are still not well characterized in animal models. In the current study, we investigated whether activation of hippocampal mitogen-activated protein kinase phosphatase-1 (MKP-1), a key factor in depression pathophysiology, also acts as a mediator of systemic effects of stress. First, we demonstrated that treatment with the glucocorticoid receptor (GR) agonist dexamethasone or acute restraint stress (ARS) significantly increased Mkp-1 mRNA levels within the rat hippocampus. Conversely, administration of the GR antagonist mifepristone 30 min before ARS produced a partial blockade of Mkp-1 upregulation, suggesting that stress activates MKP-1, at least in part, through upstream GR signaling. Chronic corticosterone (CORT) administration evoked comparable increases in hippocampal MKP-1 protein levels and produced a robust increase in behavioral emotionality. In addition to behavioral deficits, chronic CORT treatment also produced systemic pathophysiological effects. Elevated levels of renal inflammation protein markers (NGAL and IL18) were observed suggesting tissue damage and early kidney impairment. In a rescue experiment, the effects of CORT on development of depressive-like behaviors and increased NGAL and IL18 protein levels in the kidney were blocked by CRISPR-mediated knockdown of hippocampal Mkp-1 prior to CORT exposure. In sum, these findings further demonstrate that MKP-1 is necessary for development of enhanced behavioral emotionality, while also suggesting a role in stress mechanisms linking brain dysfunction and systemic illness such as kidney disease.


Subject(s)
Corticosterone/administration & dosage , Corticosterone/adverse effects , Dual Specificity Phosphatase 1/biosynthesis , Hippocampus/metabolism , Stress, Psychological/chemically induced , Stress, Psychological/metabolism , Animals , Cell Line, Tumor , Dexamethasone/administration & dosage , Dexamethasone/adverse effects , Drug Administration Schedule , Glucocorticoids/administration & dosage , Glucocorticoids/adverse effects , Hippocampus/drug effects , Male , Rats , Rats, Sprague-Dawley
11.
Neuroscience ; 459: 85-103, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33524494

ABSTRACT

The synaptogenic hypothesis of major depressive disorder implies that preventing the onset of depressive-like behavior also prevents the loss of hippocampal spine synapses. By applying the psychoactive drugs, diazepam and fluoxetine, we investigated whether blocking the development of helpless behavior by promoting stress resilience in the rat learned helplessness paradigm is associated with a synaptoprotective action in the hippocampus. Adult ovariectomized and intact female Sprague-Dawley rats (n = 297) were treated with either diazepam, fluoxetine, or vehicle, exposed to inescapable footshocks or sham stress, and tested in an active escape task to assess helpless behavior. Escape-evoked corticosterone secretion, as well as remodeling of hippocampal spine synapses at a timepoint representing the onset of escape testing were also analyzed. In ovariectomized females, treatment with diazepam prior to stress exposure prevented helpless behavior, blocked the loss of hippocampal spine synapses, and muted the corticosterone surge evoked by escape testing. Although fluoxetine stimulated escape performance and hippocampal synaptogenesis under non-stressed conditions, almost all responses to fluoxetine were abolished following exposure to inescapable stress. Only a much higher dose of fluoxetine was capable of partly reproducing the strong protective actions of diazepam. Importantly, these protective actions were retained in the presence of ovarian hormones. Our findings indicate that stress resilience is associated with the preservation of spine synapses in the hippocampus, raising the possibility that, besides synaptogenesis, hippocampal synaptoprotection is also implicated in antidepressant therapy.


Subject(s)
Depressive Disorder, Major , Helplessness, Learned , Animals , Disease Models, Animal , Female , Fluoxetine/pharmacology , Hippocampus , Rats , Rats, Sprague-Dawley
13.
Nat Genet ; 53(2): 174-184, 2021 02.
Article in English | MEDLINE | ID: mdl-33510476

ABSTRACT

We conducted genome-wide association analyses of over 250,000 participants of European (EUR) and African (AFR) ancestry from the Million Veteran Program using electronic health record-validated post-traumatic stress disorder (PTSD) diagnosis and quantitative symptom phenotypes. Applying genome-wide multiple testing correction, we identified three significant loci in European case-control analyses and 15 loci in quantitative symptom analyses. Genomic structural equation modeling indicated tight coherence of a PTSD symptom factor that shares genetic variance with a distinct internalizing (mood-anxiety-neuroticism) factor. Partitioned heritability indicated enrichment in several cortical and subcortical regions, and imputed genetically regulated gene expression in these regions was used to identify potential drug repositioning candidates. These results validate the biological coherence of the PTSD syndrome, inform its relationship to comorbid anxiety and depressive disorders and provide new considerations for treatment.


Subject(s)
Stress Disorders, Post-Traumatic/genetics , Black or African American/genetics , Anxiety Disorders/genetics , Case-Control Studies , Drug Repositioning , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Mental Disorders/genetics , Polymorphism, Single Nucleotide , Stress Disorders, Post-Traumatic/etiology , United States , Veterans , White People
14.
Am J Psychiatry ; 178(1): 48-64, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32539528

ABSTRACT

OBJECTIVE: Pediatric obsessive-compulsive disorder (OCD) sometimes appears rapidly, even overnight, often after an infection. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections, or PANDAS, describes such a situation after infection with Streptococcus pyogenes. PANDAS may result from induced autoimmunity against brain antigens, although this remains unproven. Pilot work suggests that IgG antibodies from children with PANDAS bind to cholinergic interneurons (CINs) in the striatum. CIN deficiency has been independently associated with tics in humans and with repetitive behavioral pathology in mice, making it a plausible locus of pathology. The authors sought to replicate and extend earlier work and to investigate the cellular effects of PANDAS antibodies on cholinergic interneurons. METHODS: Binding of IgG to specific neurons in human and mouse brain slices was evaluated ex vivo after incubation with serum from 27 children with rigorously characterized PANDAS, both at baseline and after intravenous immunoglobulin (IVIG) treatment, and 23 matched control subjects. Binding was correlated with symptom measures. Neural activity after serum incubation was assessed in mouse slices using molecular markers and electrophysiological recording. RESULTS: IgG from children with PANDAS bound to CINs, but not to several other neuron types, more than IgG from control subjects, in three independent cohorts of patients. Post-IVIG serum had reduced IgG binding to CINs, and this reduction correlated with symptom improvement. Baseline PANDAS sera decreased activity of striatal CINs, but not of parvalbumin-expressing GABAergic interneurons, and altered their electrophysiological responses, in acute mouse brain slices. Post-IVIG PANDAS sera and IgG-depleted baseline sera did not alter the activity of striatal CINs. CONCLUSIONS: These findings provide strong evidence for striatal CINs as a critical cellular target that may contribute to pathophysiology in children with rapid-onset OCD symptoms, and perhaps in other conditions.


Subject(s)
Autoantibodies/immunology , Autoimmune Diseases/immunology , Cholinergic Neurons/immunology , Corpus Striatum/immunology , Obsessive-Compulsive Disorder/immunology , Streptococcal Infections/immunology , Animals , Autoimmune Diseases/complications , Case-Control Studies , Child , Child, Preschool , Cholinergic Neurons/physiology , Corpus Striatum/physiopathology , Female , Humans , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obsessive-Compulsive Disorder/complications , Obsessive-Compulsive Disorder/etiology , Streptococcal Infections/complications
15.
Mol Psychiatry ; 26(9): 5097-5111, 2021 09.
Article in English | MEDLINE | ID: mdl-32488125

ABSTRACT

Both the NMDA receptor (NMDAR) positive allosteric modulator (PAM), and antagonist, can exert rapid antidepressant effects as shown in several animal and human studies. However, how this bidirectional modulation of NMDARs causes similar antidepressant effects remains unknown. Notably, the initial cellular trigger, specific cell-type(s), and subunit(s) of NMDARs mediating the antidepressant-like effects of a PAM or an antagonist have not been identified. Here, we used electrophysiology, microdialysis, and NMR spectroscopy to evaluate the effect of a NMDAR PAM (rapastinel) or NMDAR antagonist, ketamine on NMDAR function and disinhibition-mediated glutamate release. Further, we used cell-type specific knockdown (KD), pharmacological, and behavioral approaches to dissect the cell-type specific role of GluN2B, GluN2A, and dopamine receptor subunits in the actions of NMDAR PAM vs. antagonists. We demonstrate that rapastinel directly enhances NMDAR activity on principal glutamatergic neurons in medial prefrontal cortex (mPFC) without any effect on glutamate efflux, while ketamine blocks NMDAR on GABA interneurons to cause glutamate efflux and indirect activation of excitatory synapses. Behavioral studies using cell-type-specific KD in mPFC demonstrate that NMDAR-GluN2B KD on Camk2a- but not Gad1-expressing neurons blocks the antidepressant effects of rapastinel. In contrast, GluN2B KD on Gad1- but not Camk2a-expressing neurons blocks the actions of ketamine. The results also demonstrate that Drd1-expressing pyramidal neurons in mPFC mediate the rapid antidepressant actions of ketamine and rapastinel. Together, these results demonstrate unique initial cellular triggers as well as converging effects on Drd1-pyramidal cell signaling that underlie the antidepressant actions of NMDAR-positive modulation vs. NMDAR blockade.


Subject(s)
Ketamine , Receptors, N-Methyl-D-Aspartate , Animals , Antidepressive Agents/pharmacology , Humans , Interneurons/metabolism , Ketamine/pharmacology , Prefrontal Cortex/metabolism , Pyramidal Cells/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
16.
Nat Neurosci ; 24(1): 24-33, 2021 01.
Article in English | MEDLINE | ID: mdl-33349712

ABSTRACT

Despite extensive study of the neurobiological correlates of post-traumatic stress disorder (PTSD), little is known about its molecular determinants. Here, differential gene expression and network analyses of four prefrontal cortex subregions from postmortem tissue of people with PTSD demonstrate extensive remodeling of the transcriptomic landscape. A highly connected downregulated set of interneuron transcripts is present in the most significant gene network associated with PTSD. Integration of this dataset with genotype data from the largest PTSD genome-wide association study identified the interneuron synaptic gene ELFN1 as conferring significant genetic liability for PTSD. We also identified marked transcriptomic sexual dimorphism that could contribute to higher rates of PTSD in women. Comparison with a matched major depressive disorder cohort revealed significant divergence between the molecular profiles of individuals with PTSD and major depressive disorder despite their high comorbidity. Our analysis provides convergent systems-level evidence of genomic networks within the prefrontal cortex that contribute to the pathophysiology of PTSD in humans.


Subject(s)
Brain Chemistry/genetics , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/physiopathology , Transcriptome , Adult , Autopsy , Cohort Studies , Depressive Disorder, Major/genetics , Female , Gene Expression Regulation/genetics , Gene Regulatory Networks , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Interneurons/metabolism , Male , Middle Aged , Nerve Tissue Proteins/genetics , Sex Characteristics , Young Adult
17.
Eur J Neurosci ; 53(1): 126-139, 2021 01.
Article in English | MEDLINE | ID: mdl-31811669

ABSTRACT

The pathophysiology and treatment of depression have been the focus of intense research and while there is much that remains unknown, modern neurobiological approaches are making progress. This work demonstrates that stress and depression are associated with atrophy of neurons and reduced synaptic connectivity in brain regions such as the hippocampus and prefrontal cortex that contribute to depressive behaviors, and conversely that antidepressant treatment can reverse these deficits. The role of neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF), has been of particular interest as these factors play a key role in activity-dependent regulation of synaptic plasticity. Here, we review the literature demonstrating that exposure to stress and depression decreases BDNF expression in the hippocampus and PFC and conversely that antidepressant treatment can up-regulate BDNF in the adult brain and reverse the effects of stress. We then focus on rapid-acting antidepressants, particularly the NMDA receptor antagonist ketamine, which produces rapid synaptic and antidepressant behavioral actions that are dependent on activity-dependent release of BDNF. This rapid release of BDNF differs from typical monoaminergic agents that require chronic administration to produce a slow induction of BDNF expression, consistent with the time lag for the therapeutic action of these agents. We review evidence that other classes of rapid-acting agents also require BDNF release, demonstrating that this is a common, convergent downstream mechanism. Finally, we discuss evidence that the actions of ketamine are also dependent on another growth factor, vascular endothelial growth factor (VEGF) and its complex interplay with BDNF.


Subject(s)
Brain-Derived Neurotrophic Factor , Ketamine , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Ketamine/pharmacology , Ketamine/therapeutic use , Vascular Endothelial Growth Factor A
18.
Int J Neuropsychopharmacol ; 24(2): 118-129, 2021 02 15.
Article in English | MEDLINE | ID: mdl-32951025

ABSTRACT

BACKGROUND: The molecular pathology underlying posttraumatic stress disorder (PTSD) remains unclear mainly due to a lack of human PTSD postmortem brain tissue. The orexigenic neuropeptides ghrelin, neuropeptide Y, and hypocretin were recently implicated in modulating negative affect. Drawing from the largest functional genomics study of human PTSD postmortem tissue, we investigated whether there were molecular changes of these and other appetitive molecules. Further, we explored the interaction between PTSD and body mass index (BMI) on gene expression. METHODS: We analyzed previously reported transcriptomic data from 4 prefrontal cortex regions from 52 individuals with PTSD and 46 matched neurotypical controls. We employed gene co-expression network analysis across the transcriptomes of these regions to uncover PTSD-specific networks containing orexigenic genes. We utilized Ingenuity Pathway Analysis software for pathway annotation. We identified differentially expressed genes (DEGs) among individuals with and without PTSD, stratified by sex and BMI. RESULTS: Three PTSD-associated networks (P < .01) contained genes in signaling families of appetitive molecules: 2 in females and 1 in all subjects. We uncovered DEGs (P < .05) between PTSD and control subjects stratified by sex and BMI with especially robust changes in males with PTSD with elevated vs normal BMI. Further, we identified putative upstream regulators (P < .05) driving these changes, many of which were enriched for involvement in inflammation. CONCLUSIONS: PTSD-associated cortical transcriptomic modules contain transcripts of appetitive genes, and BMI further interacts with PTSD to impact expression. DEGs and inferred upstream regulators of these modules could represent targets for future pharmacotherapies for obesity in PTSD.


Subject(s)
Body Mass Index , Gene Regulatory Networks/genetics , Ghrelin/metabolism , Neuropeptide Y/metabolism , Orexins/metabolism , Prefrontal Cortex/metabolism , Stress Disorders, Post-Traumatic/metabolism , Transcriptome/genetics , Adult , Autopsy , Female , Humans , Male , Middle Aged
19.
Mol Psychiatry ; 26(6): 1945-1966, 2021 06.
Article in English | MEDLINE | ID: mdl-32161363

ABSTRACT

The SHANK3 gene encodes a postsynaptic scaffold protein in excitatory synapses, and its disruption is implicated in neurodevelopmental disorders such as Phelan-McDermid syndrome, autism spectrum disorder, and schizophrenia. Most studies of SHANK3 in the neocortex and hippocampus have focused on disturbances in pyramidal neurons. However, GABAergic interneurons likewise receive excitatory inputs and presumably would also be a target of constitutive SHANK3 perturbations. In this study, we characterize the prefrontal cortical microcircuit in awake mice using subcellular-resolution two-photon microscopy. We focused on a nonsense R1117X mutation, which leads to truncated SHANK3 and has been linked previously to cortical dysfunction. We find that R1117X mutants have abnormally elevated calcium transients in apical dendritic spines. The synaptic calcium dysregulation is due to a loss of dendritic inhibition via decreased NMDAR currents and reduced firing of dendrite-targeting somatostatin-expressing (SST) GABAergic interneurons. Notably, upregulation of the NMDAR subunit GluN2B in SST interneurons corrects the excessive synaptic calcium signals and ameliorates learning deficits in R1117X mutants. These findings reveal dendrite-targeting interneurons, and more broadly the inhibitory control of dendritic spines, as a key microcircuit mechanism compromised by the SHANK3 dysfunction.


Subject(s)
Autism Spectrum Disorder , Dendritic Spines , Animals , Calcium , Codon, Nonsense , Mice , Microfilament Proteins , Nerve Tissue Proteins/genetics , Synapses
20.
Neuropsychopharmacology ; 46(4): 799-808, 2021 03.
Article in English | MEDLINE | ID: mdl-33059355

ABSTRACT

Dysregulation of the glutamatergic system and its receptors in medial prefrontal cortex (mPFC) has been implicated in major depressive disorder. Recent preclinical studies have shown that enhancing NMDA receptor (NMDAR) activity can exert rapid antidepressant-like effects. AGN-241751, an NMDAR positive allosteric modulator (PAM), is currently being tested as an antidepressant in clinical trials, but the mechanism and NMDAR subunit(s) mediating its antidepressant-like effects are unknown. We therefore used molecular, biochemical, and electrophysiological approaches to examine the cell-type-specific role of GluN2B-containing NMDAR in mediating antidepressant-like behavioral effects of AGN-241751. We demonstrate that AGN-241751 exerts antidepressant-like effects and reverses behavioral deficits induced by chronic unpredictable stress in mice. AGN-241751 treatment enhances NMDAR activity of excitatory and parvalbumin-inhibitory neurons in mPFC, activates Akt/mTOR signaling, and increases levels of synaptic proteins crucial for synaptic plasticity in the prefrontal cortex. Furthermore, cell-type-specific knockdown of GluN2B-containing NMDARs in mPFC demonstrates that GluN2B subunits on excitatory, but not inhibitory, neurons are necessary for antidepressant-like effects of AGN-241751. Together, these results demonstrate antidepressant-like actions of the NMDAR PAM AGN-241751 and identify GluN2B on excitatory neurons of mPFC as initial cellular trigger underlying these behavioral effects.


Subject(s)
Depressive Disorder, Major , Receptors, N-Methyl-D-Aspartate , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Mice , Neurons/metabolism , Prefrontal Cortex/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...