Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 14(26): e1800749, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29845748

ABSTRACT

Single- and few-layered InSe flakes are produced by the liquid-phase exfoliation of ß-InSe single crystals in 2-propanol, obtaining stable dispersions with a concentration as high as 0.11 g L-1 . Ultracentrifugation is used to tune the morphology, i.e., the lateral size and thickness of the as-produced InSe flakes. It is demonstrated that the obtained InSe flakes have maximum lateral sizes ranging from 30 nm to a few micrometers, and thicknesses ranging from 1 to 20 nm, with a maximum population centered at ≈5 nm, corresponding to 4 Se-In-In-Se quaternary layers. It is also shown that no formation of further InSe-based compounds (such as In2 Se3 ) or oxides occurs during the exfoliation process. The potential of these exfoliated-InSe few-layer flakes as a catalyst for the hydrogen evolution reaction (HER) is tested in hybrid single-walled carbon nanotubes/InSe heterostructures. The dependence of the InSe flakes' morphologies, i.e., surface area and thickness, on the HER performances is highlighted, achieving the best efficiencies with small flakes offering predominant edge effects. The theoretical model unveils the origin of the catalytic efficiency of InSe flakes, and correlates the catalytic activity to the Se vacancies at the edge of the flakes.

2.
Nanomaterials (Basel) ; 7(11)2017 Nov 05.
Article in English | MEDLINE | ID: mdl-29113090

ABSTRACT

Among the various two-dimensional semiconductors, indium selenide has recently triggered the interest of scientific community, due to its band gap matching the visible region of the electromagnetic spectrum, with subsequent potential applications in optoelectronics and especially in photodetection. In this feature article, we discuss the main issues in the synthesis, the ambient stability and the application capabilities of this novel class of two-dimensional semiconductors, by evidencing open challenges and pitfalls. In particular, we evidence how the growth of single crystals with reduced amount of Se vacancies is crucial in the road map for the exploitation of indium selenide in technology through ambient-stable nanodevices with outstanding values of both mobility of charge carriers and ON/OFF ratio. The surface chemical reactivity of the InSe surface, as well as applications in the fields of broadband photodetection, flexible electronics and solar energy conversion are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...