Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37687953

ABSTRACT

Electrophysiological mapping (EM) using acute electrode probes is a common procedure performed during functional neurosurgery. Due to their constructive specificities, the EM probes are lagging in innovative enhancements. This work addressed complementing a clinically employed EM probe with carbonic and circumferentially segmented macrocontacts that are operable both for neurophysiological sensing ("recording") of local field potentials (LFP) and for test stimulation. This paper illustrates in-depth the development that is based on the direct writing of functional materials. The unconventional fabrication processes were optimized on planar geometry and then transferred to the cylindrically thin probe body. We report and discuss the constructive concept and architecture of the probe, characteristics of the electrochemical interface deduced from voltammetry and chronopotentiometry, and the results of in vitro and in vivo recording and pulse stimulation tests. Two- and three-directional macrocontacts were added on probes having shanks of 550 and 770 µm diameters and 10-23 cm lengths. The graphitic material presents a ~2.7 V wide, almost symmetric water electrolysis window, and an ultra-capacitive charge transfer. When tested with clinically relevant 150 µs biphasic current pulses, the interfacial polarization stayed safely away from the water window for pulse amplitudes up to 9 mA (135 µC/cm2). The in vivo experiments on adult rat models confirmed the high-quality sensing of LFPs. Additionally, the in vivo-prevailing increase in the electrode impedance and overpotential are discussed and modeled by an ionic mobility-reducing spongiform structure; this restricted diffusion model gives new applicative insight into the in vivo-uprisen stimulation overpotential.


Subject(s)
Carbon , Graphite , Animals , Rats , Bandages , Biological Transport , Electrodes
2.
Materials (Basel) ; 14(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063918

ABSTRACT

This paper presents the relative humidity (RH) sensing response of a resistive sensor employing sensing layers based on a ternary nanocomposite comprising graphene oxide-oxidized carbon nanohorns-polyvinylpyrrolidone (GO-CNHox-PVP), at 1/1/1, 1/2/1, and 1/3/1 w/w/w mass ratios. The sensing structure is composed of a silicon substrate, a SiO2 layer, and interdigitated transducers (IDT) electrodes, on which the sensing layer is deposited via the drop-casting method. The morphology and the composition of the sensing layers are investigated through scanning electron microscopy (SEM) and RAMAN spectroscopy. The RH sensing capability of each carbonaceous nanocomposite-based thin film was analyzed by applying a current between the two electrodes and by measuring the voltage difference when varying the RH from 0% to 100% in humid nitrogen. The sensors have a room temperature response comparable to that of a commercial humidity sensor and are characterized by a rapid response, excellent linearity, good sensitivity, and recovery time. The manufactured sensing devices' transfer functions were established, and we extracted the response and recovery times. While the structures with GO/CNHox/PVP at 1/1/1 ratio (w/w/w) had the best performance in terms of relative sensibility, response time, and recovery time, the sensors employing the GO/CNHox/PVP nanocomposite at the 1/2/1 ratio (w/w/w) had the best linearity. Moreover, the ternary mixture proved to have much better sensing properties compared to CNHox and CNHox-PVP-based sensing layers in terms of sensitivity and linearity. Each component of the ternary nanocomposites' functional role is explained based on their physical and chemical properties. We analyzed the potential mechanism associated with the sensors' response; among these, the effect of the p-type semiconductor behavior of CNHox and GO, correlated with swelling of the PVP, was dominant and led to increased resistance of the sensing layer.

3.
Sensors (Basel) ; 21(4)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669486

ABSTRACT

This paper reports, for the first time, on the electrical percolation threshold in oxidized carbon nanohorns (CNHox)-polyvinylpyrrolidone (PVP) films. We demonstrate-starting from the design and synthesis of the layers-how these films can be used as sensing layers for resistive relative humidity sensors. The morphology and the composition of the sensing layers are investigated through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and RAMAN spectroscopy. For establishing the electrical percolation thresholds of CNHox in PVP, these nanocomposite thin films were deposited on interdigitated transducer (IDT) dual-comb structures. The IDTs were processed both on a rigid Si/SiO2 substrate with a spacing of 10 µm between metal digits, and a flexible substrate (polyimide) with a spacing of 100 µm. The percolation thresholds of CNHox in the PVP matrix were equal to (0.05-0.1) wt% and 3.5 wt% when performed on 10 µm-IDT and 100 µm-IDT, respectively. The latter value agreed well with the percolation threshold value of about 4 wt% predicted by the aspect ratio of CNHox. In contrast, the former value was more than an order of magnitude lower than expected. We explained the percolation threshold value of (0.05-0.1) wt% by the increased probability of forming continuous conductive paths at much lower CNHox concentrations when the gap between electrodes is below a specific limit. The change in the nanocomposite's longitudinal Young modulus, as a function of the concentration of oxidized carbon nanohorns in the polymer matrix, is also evaluated. Based on these results, we identified a new parameter (i.e., the inter-electrode spacing) affecting the electrical percolation threshold in micro-nano electronic devices. The electrical percolation threshold's critical role in the resistive relative-humidity sensors' design and functioning is clearly emphasized.

4.
Nanomaterials (Basel) ; 10(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353231

ABSTRACT

Organic-inorganic ternary nanohybrids consisting of oxidized-single walled carbon nanohorns-SnO2-polyvinylpyrrolidone (ox-SWCNH/SnO2/PVP) with stoichiometry 1/1/1 and 2/1/1 and ox-SWCNH/ZnO/PVP = 5/2/1 and 5/3/2 (all mass ratios) were synthesized and characterized as sensing films of chemiresistive test structures for ethanol vapor detection in dry air, in the range from 0 up to 50 mg/L. All the sensing films had an ox-SWCNH concentration in the range of 33.3-62.5 wt%. A comparison between the transfer functions and the response and recovery times of these sensing devices has shown that the structures with ox-SWCNH/SnO2/PVP = 1/1/1 have the highest relative sensitivities of 0.0022 (mg/L)-1, while the devices with ox-SWCNH/SnO2/PVP = 2/1/1 have the lowest response time (15 s) and recovery time (50 s) for a room temperature operation, proving the key role of carbonic material in shaping the static and dynamic performance of the sensor. These response and recovery times are lower than those of "heated" commercial sensors. The sensing mechanism is explained in terms of the overall response of a p-type semiconductor, where ox-SWCNH percolated between electrodes of the sensor, shunting the heterojunctions made between n-type SnO2 or ZnO and p-type ox-SWCNH. The hard-soft acid-base (HSAB) principle supports this mechanism. The low power consumption of these devices, below 2 mW, and the sensing performances at room temperature may open new avenues towards ethanol sensors for passive samplers of environment monitoring, alcohol test portable instruments and wireless network sensors for Internet of Things applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...