Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232531

ABSTRACT

Anode modification with carbon nanomaterials is an important strategy for the improvement of microbial fuel cell (MFC) performance. The presence of nitrogen in the carbon network, introduced as active nitrogen functional groups, is considered beneficial for anode modification. In this aim, nitrogen-containing carbon nanostructures (NCNs) with different morphologies were obtained via carbonization of polyaniline and were further investigated as anode modifiers in MFCs. The present study investigates the influence of NCN morphology on the changes in the anodic microbial community and MFC performance. Results show that the nanofibrillar morphology of NCNs is beneficial for the improvement of MFC performance, with a maximum power density of 40.4 mW/m2, 1.25 times higher than the anode modified with carbonized polyaniline with granular morphology and 2.15 times higher than MFC using the carbon cloth-anode. The nanofibrillar morphology, due to the well-defined individual nanofibers separated by microgaps and micropores and a better organization of the carbon network, leads to a larger specific surface area and higher conductivity, which can allow more efficient substrate transport and better bacterial colonization with greater relative abundances of Geobacter and Thermoanaerobacter, justifying the improvement of MFC performance.


Subject(s)
Bioelectric Energy Sources , Nanostructures , Aniline Compounds , Bioelectric Energy Sources/microbiology , Carbon , Electrodes , Nitrogen
2.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36234595

ABSTRACT

Catalytic ozonation is an important water treatment method among advanced oxidation processes (AOPs). Since the first development, catalytic ozonation has been consistently improved in terms of catalysts used and the optimization of operational parameters. The aim of this work is to compare the catalytic activity of polyaniline (PANI) and thermally treated polyaniline (PANI 900) in the catalytic ozonation of ibuprofen solutions at different pH values (4, 7, and 10). Catalysts were thoroughly characterized through multiple techniques (SEM, Raman spectroscopy, XPS, pHPZC, and so on), while the oxidation process of ibuprofen solutions (100 mgL-1) was assessed by several analytical methods (HPLC, UV254, TOC, COD, and BOD5). The experimental data demonstrate a significant improvement in ibuprofen removal in the presence of prepared solids (20 min for PANI 900 at pH10) compared with non-catalytic processes (56 min at pH 10). Moreover, the influence of solution pH was emphasized, showing that, in the basic region, the removal rate of organic substrate is higher than in acidic or neutral range. Ozone consumption mgO3/mg ibuprofen was considerably reduced for catalytic processes (17.55-PANI, 11.18-PANI 900) compared with the absence of catalysts (29.64). Hence, beside the ibuprofen degradation, the catalysts used are very active in the mineralization of organic substrate and/or formation of biodegradable compounds. The best removal rate of target pollutants and oxidation by-products was achieved by PANI 900, although raw polyaniline also presents important activity in the oxidation process. Therefore, it can be stated that polyaniline-based catalysts are effective in the oxidation processes.

3.
Nanomaterials (Basel) ; 12(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35214942

ABSTRACT

Analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) such as paracetamol, diclofenac, and ibuprofen are frequently encountered in surface and ground water, thereby posing a significant risk to aquatic ecosystems. Our study reports the catalytic performances of nanosystems TiO2-MexOy (Me = Ce, Sn) prepared by the sol-gel method and deposited onto glass slides by a dip-coating approach in the removal of paracetamol from aqueous solutions by catalytic ozonation. The effect of catalyst type and operation parameters on oxidation efficiency was assessed. In addition to improving this process, the present work simplifies it by avoiding the difficult step of catalyst separation. It was found that the thin films were capable of removing all pollutants from target compounds to the oxidation products.

4.
Sci Rep ; 11(1): 5055, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33658564

ABSTRACT

In the present study, the synthesis of titanium nitride (TiN) by carbothermal reduction nitridation (CRN) reaction using nanocomposites made of mesoporous TiO2/acrylonitrile with different content of inorganic phase were explored. The choice of hybrid nanocomposite as precursor for the synthesis of TiN was made due to the possibility of having an intimate interface between the organic and inorganic phases in the mixture that can favours CRN reaction. Subsequently, the hybrid composites have been subjected to four-step thermal treatments at 290 °C, 550 °C, 1000 °C and 1400 °C under nitrogen atmosphere. The XRD results after thermal treatment at 1000 °C under nitrogen flow show the coexistence of two crystalline phases of TiO2, i.e. anatase and rutile, as well as TiN phase, together with the detection of amorphous carbon that proved the initiation of CRN reaction. Furthermore, the observations based on XRD patterns of samples thermally treated at 1400 °C in nitrogen atmosphere were in agreement with SEM analysis, that shows the formation of TiN by CRN reaction via hybrid nanocomposites mesoporous TiO2/acrylonitrile.

6.
Sci Rep ; 6: 23411, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26997549

ABSTRACT

Investigations of the paleosecular variation of the geomagnetic field on geological timescales depend on globally distributed data sets from lava flows. We report new paleomagnetic results from lava flows of the East Carpathian Mountains (23.6°E, 46.4°N) erupted between 4 and 6 Ma. The average virtual geomagnetic pole position (76 sites) includes the North Geographic Pole and the dispersion of virtual geomagnetic poles is in general agreement with the data of the Time Averaged geomagnetic Field Initiative. Based on this study and previous results from the East Carpathians obtained from 0.04-4 Ma old lava flows, we show that high value of dispersion are characteristic only for 1.5-2.8 Ma old lava flows. High values of dispersion during the Matuyama chron are also reported around 50°N, in the global paleosecular variation data set. More data are needed at a global level to determine if these high dispersions reflect the behaviour of the geomagnetic field or an artefact of inadequate number of sites. This study of the East Carpathians volcanic rocks brings new data from southeastern Europe and which can contribute to the databases for time averaged field and paleosecular variation from lavas in the last 6 Ma.

SELECTION OF CITATIONS
SEARCH DETAIL
...