Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209778

ABSTRACT

We performed a taxonomic and comparative genomics analysis of 67 novel Paraburkholderia isolates from forest soil. Phylogenetic analysis of the recA gene revealed that these isolates formed a coherent lineage within the genus Paraburkholderia that also included Paraburkholderiaaspalathi, Paraburkholderiamadseniana, Paraburkholderiasediminicola, Paraburkholderiacaffeinilytica, Paraburkholderiasolitsugae and Paraburkholderiaelongata and four unidentified soil isolates from earlier studies. A phylogenomic analysis, along with orthoANIu and digital DNA-DNA hybridization calculations revealed that they represented four different species including three novel species and P. aspalathi. Functional genome annotation of the strains revealed several pathways for aromatic compound degradation and the presence of mono- and dioxygenases involved in the degradation of the lignin-derived compounds ferulic acid and p-coumaric acid. This co-occurrence of multiple Paraburkholderia strains and species with the capacity to degrade aromatic compounds in pristine forest soil is likely caused by the abundant presence of aromatic compounds in decomposing plant litter and may highlight a diversity in micro-habitats or be indicative of synergistic relationships. We propose to classify the isolates representing novel species as Paraburkholderia domus with LMG 31832T (=CECT 30334) as the type strain, Paraburkholderia nemoris with LMG 31836T (=CECT 30335) as the type strain and Paraburkholderia haematera with LMG 31837T (=CECT 30336) as the type strain and provide an emended description of Paraburkholderia sediminicola Lim et al. 2008.


Subject(s)
Burkholderiaceae/classification , Burkholderiaceae/genetics , Hydrocarbons, Aromatic/metabolism , Bacterial Typing Techniques , Burkholderiaceae/isolation & purification , Burkholderiaceae/metabolism , Coumaric Acids/metabolism , Coumaric Acids/pharmacokinetics , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Environmental Restoration and Remediation/methods , Forests , Genome, Bacterial , Hydrocarbons, Aromatic/pharmacokinetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Rec A Recombinases/analysis , Rec A Recombinases/genetics , Sequence Analysis, DNA , Soil Microbiology
2.
Microorganisms ; 9(2)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671218

ABSTRACT

Culturomics-based bacterial diversity studies benefit from the implementation of MALDI-TOF MS to remove genomically redundant isolates from isolate collections. We previously introduced SPeDE, a novel tool designed to dereplicate spectral datasets at an infraspecific level into operational isolation units (OIUs) based on unique spectral features. However, biological and technical variation may result in methodology-induced differences in MALDI-TOF mass spectra and hence provoke the detection of genomically redundant OIUs. In the present study, we used three datasets to analyze to which extent hierarchical clustering and network analysis allowed to eliminate redundant OIUs obtained through biological and technical sample variation and to describe the diversity within a set of spectra obtained from 134 unknown soil isolates. Overall, network analysis based on unique spectral features in MALDI-TOF mass spectra enabled a superior selection of genomically diverse OIUs compared to hierarchical clustering analysis and provided a better understanding of the inter-OIU relationships.

3.
FEMS Microbiol Ecol ; 96(9)2020 09 01.
Article in English | MEDLINE | ID: mdl-32436568

ABSTRACT

Deep-sea environments can become contaminated with petroleum hydrocarbons. The effects of hydrostatic pressure (HP) in the deep sea on microbial oil degradation are poorly understood. Here, we performed long-term enrichments (100 days) from a natural cold seep while providing optimal conditions to sustain high hydrocarbon degradation rates. Through enrichments performed at increased HP and ambient pressure (AP) and by using control enrichments with marine broth, we demonstrated that both pressure and carbon source can have a big impact on the community structure. In contrast to previous studies, hydrocarbonoclastic operational taxonomic units (OTUs) remained dominant at both AP and increased HP, suggesting piezotolerance of these OTUs over the tested pressure range. Twenty-three isolates were obtained after isolation and dereplication. After recultivation at increased HP, an Alcanivorax sp. showed promising piezotolerance in axenic culture. Furthermore, preliminary co-cultivation tests indicated synergistic growth between some isolates, which shows promise for future synthetic community construction. Overall, more insights into the effect of increased HP on oil-degrading communities were obtained as well as several interesting isolates, e.g. a piezotolerant hydrocarbonoclastic bacterium for future deep-sea bioaugmentation investigation.


Subject(s)
Petroleum , Seawater , Bacteria/genetics , Biodegradation, Environmental , Hydrocarbons
4.
Int J Syst Evol Microbiol ; 70(1): 530-536, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31613739

ABSTRACT

Strain LMG 30378T was isolated from a hydrogen-oxidizing bacteria enrichment reactor inoculated with forest soil. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that this strain belonged to the genus Achromobacter. Multilocus sequence analysis combined with sequence analysis of a 765 bp nrd A gene fragment both showed Achromobacter agilis LMG 3411T and Achromobacter denitrificans LMG 1231T to be the closest-related neighbours to strain LMG 30378T. Genome sequence analysis revealed a draft genome of 6.81 Mb with a G+C content of 67.2 mol%. In silico DNA-DNA hybridization with A. denitrificans LMG 1231T and A. agilis LMG 3411T showed 42.7 and 42.5% similarity, respectively, confirming that strain LMG 30378T represented a novel Achromobacter species. Phenotypic and metabolic characterization revealed acid phosphatase activity and the absence of phosphoamidase activity as distinctive features. The draft genome composes all necessary metabolic components to fix carbon dioxide and to oxidize molecular hydrogen, suggesting that strain LMG 30378T is a key organism in the enrichment reactor. Together, these data demonstrate that strain LMG 30378T represents a novel species of the genus Achromobacter, for which the name Achromobacter veterisilvae sp. nov. is proposed. The type strain is LMG 30378T (=CCUG 71558T).


Subject(s)
Achromobacter/classification , Bioreactors/microbiology , Phylogeny , Soil Microbiology , Achromobacter/isolation & purification , Bacterial Typing Techniques , Base Composition , Belgium , DNA, Bacterial/genetics , Fatty Acids/chemistry , Forests , Hydrogen , Multilocus Sequence Typing , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Appl Microbiol Biotechnol ; 103(19): 8241-8253, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31482282

ABSTRACT

While numerous reports exist on the axenic culturing of different hydrogen-oxidizing bacteria (HOB), knowledge about the enrichment of microbial communities growing on hydrogen, oxygen, and carbon dioxide as sole carbon and energy sources remains negligible. We want to elucidate if in such enrichments, most enriched populations are HOBs or heterotrophic organisms. In the present study, bacteria enriched from a soil sample and grown over 5 transfers using a continuous supply of hydrogen, oxygen, and carbon dioxide to obtain an enriched autotrophic hydrogen-oxidizing microbiome. The success of the enrichment was evaluated by monitoring ammonium consumption and biomass concentration for 120 days. The shift in the microbial composition of the original soil inoculum and all transfers was observed based on 16S rRNA amplicon sequencing. The hydrogen-oxidizing facultative chemolithoautotroph Hydrogenophaga electricum was isolated and found to be one of the abundant species in most transfers. Moreover, Achromobacter was isolated both under heterotrophic and autotrophic conditions, which was characterized as a hydrogen-oxidizing bacterium. The HOB enrichment condition constructed in this study provided an environment for HOB to develop and conquer in all transfers. In conclusion, we showed that enrichments on hydrogen, oxygen, and carbon dioxide as sole carbon and energy sources contain a diverse mixture of HOB and heterotrophs that resulted in a collection of culturable isolates. These isolates can be useful for further investigation for industrial applications.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Hydrogen/metabolism , Soil Microbiology , Ammonium Compounds/metabolism , Bacteria/genetics , Bacteriological Techniques , Carbon Dioxide/metabolism , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Metagenomics , Oxidation-Reduction , Oxygen/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
6.
mSystems ; 4(5)2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31506264

ABSTRACT

The isolation of microorganisms from microbial community samples often yields a large number of conspecific isolates. Increasing the diversity covered by an isolate collection entails the implementation of methods and protocols to minimize the number of redundant isolates. Matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry methods are ideally suited to this dereplication problem because of their low cost and high throughput. However, the available software tools are cumbersome and rely either on the prior development of reference databases or on global similarity analyses, which are inconvenient and offer low taxonomic resolution. We introduce SPeDE, a user-friendly spectral data analysis tool for the dereplication of MALDI-TOF mass spectra. Rather than relying on global similarity approaches to classify spectra, SPeDE determines the number of unique spectral features by a mix of global and local peak comparisons. This approach allows the identification of a set of nonredundant spectra linked to operational isolation units. We evaluated SPeDE on a data set of 5,228 spectra representing 167 bacterial strains belonging to 132 genera across six phyla and on a data set of 312 spectra of 78 strains measured before and after lyophilization and subculturing. SPeDE was able to dereplicate with high efficiency by identifying redundant spectra while retrieving reference spectra for all strains in a sample. SPeDE can identify distinguishing features between spectra, and its performance exceeds that of established methods in speed and precision. SPeDE is open source under the MIT license and is available from https://github.com/LM-UGent/SPeDEIMPORTANCE Estimation of the operational isolation units present in a MALDI-TOF mass spectral data set involves an essential dereplication step to identify redundant spectra in a rapid manner and without sacrificing biological resolution. We describe SPeDE, a new algorithm which facilitates culture-dependent clinical or environmental studies. SPeDE enables the rapid analysis and dereplication of isolates, a critical feature when long-term storage of cultures is limited or not feasible. We show that SPeDE can efficiently identify sets of similar spectra at the level of the species or strain, exceeding the taxonomic resolution of other methods. The high-throughput capacity, speed, and low cost of MALDI-TOF mass spectrometry and SPeDE dereplication over traditional gene marker-based sequencing approaches should facilitate adoption of the culturomics approach to bacterial isolation campaigns.

7.
Food Microbiol ; 82: 53-61, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31027815

ABSTRACT

Examination of the bacterial contamination on food products is still largely performed by standardized culture methods, though culture-independent methods are suggested as a more reliable approach. Knowledge of the diversity of bacteria isolated from food as well as the impact of the plate incubation conditions applied are still understudied. The impact of incubation at 7 °C and 30 °C on total aerobic bacterial count and diversity, and the performance of ISO methods generally applied in microbiological quality examination were assessed by culture combined MALDI-TOF MS identification and 16S rRNA amplicon sequencing. Examining breast skin of 16 chicken carcasses, no significant impact of the incubation temperature on the total aerobic bacteria level and diversity was detected, limiting the usefulness of additional psychrophilic examination. Bacteria phenotypically similar to Pseudomonas, were identified on selective CFC plates, and on MRS agar plates for lactic acid bacteria, Escherichia coli and Staphylococcus were commonly present. Application of 16S rRNA amplicon sequencing revealed a higher bacterial diversity, but the impact of the DNA extraction kit applied, and the detection of non-viable bacteria should be taken into account to interpret the final outcome.


Subject(s)
Bacteria/isolation & purification , Food Microbiology/methods , Meat/microbiology , Poultry/microbiology , Sequence Analysis, DNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Bacteria/classification , Bacterial Typing Techniques , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/isolation & purification , Genetic Variation , Phylogeny , Pseudomonas/genetics , Pseudomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Staphylococcus/genetics , Staphylococcus/isolation & purification
8.
Antonie Van Leeuwenhoek ; 110(2): 281-289, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27752798

ABSTRACT

Cultivation of microbial representatives of specific functional guilds from environmental samples depends largely on the suitability of the applied growth conditions. Especially the cultivation of marine methanotrophs has received little attention, resulting in only a limited number of ex situ cultures available. In this study we investigated the effect of adhesion material and headspace composition on the methane oxidation activity in methanotrophic enrichments obtained from marine sediment. Addition of sterilized natural sediment or alternatively the addition of acid-washed silicon dioxide significantly increased methane oxidation. This positive effect was attributed to bacterial adhesion on the particles via extracellular compounds, with a minimum amount of particles required for effect. As a result, the particles were immobilized, thus creating a stratified environment in which a limited diffusive gas gradients could build up and various microniches were formed. Such diffusive gas gradient might necessitate high headspace concentrations of CH4 and CO2 for sufficient concentrations to reach the methane-oxidizing bacteria in the enrichment culture technique. Therefore, high concentrations of methane and carbon dioxide, in addition to the addition of adhesion material, were tested and indeed further stimulated methane oxidation. Use of adhesion material in combination with high concentrations of methane and carbon dioxide might thus facilitate the cultivation and subsequent enrichment of environmentally important members of this functional guild. The exact mechanism of the observed positive effects on methane oxidation and the differential effect on methanotrophic diversity still needs to be explored.


Subject(s)
Aquatic Organisms/growth & development , Bacteria/growth & development , Methane/metabolism , Aquatic Organisms/metabolism , Bacteria/metabolism , Ecosystem , Geologic Sediments/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...