Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 11030, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-26046800

ABSTRACT

Seasonal influenza virus infections cause hundreds of thousands of deaths annually while viral mutation raises the threat of a novel pandemic strain. Antiviral drugs exhibit limited efficacy unless administered early and may induce viral resistance. Thus, targeting the host response directly has been proposed as a novel therapeutic strategy with the added potential benefit of not eliciting viral resistance. Severe influenza virus infections are complicated by respiratory failure due to the development of lung microvascular leak and acute lung injury. We hypothesized that enhancing lung endothelial barrier integrity could improve the outcome. Here we demonstrate that the Tie2-agonist tetrameric peptide Vasculotide improves survival in murine models of severe influenza, even if administered as late as 72 hours after infection; the benefit was observed using three strains of the virus and two strains of mice. The effect required Tie2, was independent of viral replication and did not impair lung neutrophil recruitment. Administration of the drug decreased lung edema, arterial hypoxemia and lung endothelial apoptosis; importantly, Vasculotide is inexpensive to produce, is chemically stable and is unrelated to any Tie2 ligands. Thus, Vasculotide may represent a novel and practical therapy for severe infections with influenza.


Subject(s)
Orthomyxoviridae Infections/drug therapy , Peptides/therapeutic use , Receptor, TIE-2/agonists , Animals , Bronchoalveolar Lavage Fluid/cytology , Cells, Cultured , Disease Models, Animal , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/physiology , Mice , Mice, Inbred C57BL , Neutrophils/cytology , Neutrophils/immunology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/pathology , Peptides/pharmacology , Receptor, TIE-2/metabolism , Survival Rate , Virus Replication/drug effects
2.
Nat Cell Biol ; 9(2): 218-24, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17237771

ABSTRACT

Nutrients and bioenergetics are prerequisites for proliferation and survival of mammalian cells. We present evidence that the cyclin-dependent kinase inhibitor p27(Kip1), is phosphorylated at Thr 198 downstream of the Peutz-Jeghers syndrome protein-AMP-activated protein kinase (LKB1-AMPK) energy-sensing pathway, thereby increasing p27 stability and directly linking sensing of nutrient concentration and bioenergetics to cell-cycle progression. Ectopic expression of wild-type and phosphomimetic Thr 198 to Asp 198 (T198D), but not unstable Thr 198 to Ala 198 (p27(T198A)) is sufficient to induce autophagy. Under stress conditions that activate the LKB1-AMPK pathway with subsequent induction of autophagy, p27 knockdown results in apoptosis. Thus LKB1-AMPK pathway-dependent phosphorylation of p27 at Thr 198 stabilizes p27 and permits cells to survive growth factor withdrawal and metabolic stress through autophagy. This may contribute to tumour-cell survival under conditions of growth factor deprivation, disrupted nutrient and energy metabolism, or during stress of chemotherapy.


Subject(s)
Apoptosis/physiology , Autophagy/physiology , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Energy Metabolism , Multienzyme Complexes/metabolism , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Cell Line, Tumor , Humans , Phosphorylation , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...