Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Transl Res ; 255: 119-127, 2023 05.
Article in English | MEDLINE | ID: mdl-36528340

ABSTRACT

Genetic diagnosis of familial hypercholesterolemia (FH) remains unexplained in 30 to 70% of patients after exclusion of monogenic disease. There is now a growing evidence that a polygenic burden significantly modulates LDL-cholesterol (LDL-c) concentrations. Several LDL-c polygenic risk scores (PRS) have been set up. However, the balance between their diagnosis performance and their practical use in routine practice is not clearly established. Consequently, we set up new PRS based on our routine panel for sequencing and compared their diagnostic performance with previously-published PRS. After a meta-analysis, four new PRS including 165 to 1633 SNP were setup using different softwares. They were established using two French control cohorts (MONA LISA n=1082 and FranceGenRef n=856). Then the explained LDL-c variance and the ability of each PRS to discriminate monogenic negative FH patients (M-) versus healthy controls were compared with 4 previously-described PRS in 785 unrelated FH patients. Between all PRS, the 165-SNP PRS developed with PLINK showed the best LDL-c explained variance (adjusted R²=0.19) and the best diagnosis abilities (AUROC=0.77, 95%CI=0.74-0.79): it significantly outperformed all the previously-published PRS (p<1 × 10-4). By using a cut-off at the 75th percentile, 61% of M- patients exhibited a polygenic hypercholesterolemia with the 165-SNP PRS versus 48% with the previously published 12-SNP PRS (p =3.3 × 10-6). These results were replicated using the UK biobank. This new 165-SNP PRS, usable in routine diagnosis, exhibits better diagnosis abilities for a polygenic hypercholesterolemia diagnosis. It would be a valuable tool to optimize referral for whole genome sequencing.


Subject(s)
Hypercholesterolemia , Hyperlipoproteinemia Type II , Humans , Cholesterol, LDL/genetics , Hypercholesterolemia/diagnosis , Hypercholesterolemia/genetics , High-Throughput Nucleotide Sequencing , Proprotein Convertase 9/genetics , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/genetics , Risk Factors , Receptors, LDL/genetics , Mutation
2.
Atherosclerosis ; 314: 63-70, 2020 12.
Article in English | MEDLINE | ID: mdl-33186855

ABSTRACT

BACKGROUND AND AIMS: Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in cholesterol homeostasis. A common variant, the G allele in position c.1420 (c.1420G), has been associated with a decrease of both plasma PCSK9 and LDL-cholesterol concentrations. However, the functional effect of this variant is currently not well understood. We hypothesized that it could be explained by functional variants in linkage disequilibrium (LD), more specifically, by variants located in the PCSK9 3' UTR as targets for miR regulation of PCSK9 expression. METHODS: Variations in LD with c.1420G were studied in 1029 patients followed for dyslipidaemia. In silico studies identified potential miRNA binding sites induced by PCSK9 3'UTR variants in LD with c.1420G. Their functionality was studied with a luciferase reporter assay in HuH-7 cells and confirmed by cotransfection of anti-miRNAs. RESULTS: The c.*571C and c.*234T variants located in the PCSK9 3'UTR were found in tight LD with c.1420G (D' = 0.962; LOD = 163.06). The haplotype carrying c.*571C showed a 6.7% decrease in luciferase activity (p = 0.003). Inhibition of hsa-miR-1228-3p and hsa-miR-143-5p counteracted their effect on the haplotype carrying c.*571C allele, suggesting that PCSK9 expression was decreased by the endogenous binding of hsa-miR-1228-3p and hsa-miR-143-5p on its 3'UTR. CONCLUSIONS: This post-transcriptional regulation might contribute towards the association between plasma PCSK9 levels and c.1420G. Such regulation of PCSK9 expression may open new perspectives for the treatment of hypercholesterolemia and atherosclerosis cardiovascular diseases.


Subject(s)
MicroRNAs , Proprotein Convertase 9 , 3' Untranslated Regions , Binding Sites , Humans , Linkage Disequilibrium , MicroRNAs/genetics , Proprotein Convertase 9/genetics
3.
Clin Genet ; 98(6): 589-594, 2020 12.
Article in English | MEDLINE | ID: mdl-33111339

ABSTRACT

The aim of this study was to provide an efficient tool: reliable, able to increase the molecular diagnosis performance, to facilitate the detection of copy number variants (CNV), to assess genetic risk scores (wGRS) and to offer the opportunity to explore candidate genes. Custom SeqCap EZ libraries, NextSeq500 sequencing and a homemade pipeline enable the analysis of 311 dyslipidemia-related genes. In the training group (48 DNA from patients with a well-established molecular diagnosis), this next-generation sequencing (NGS) workflow showed an analytical sensitivity >99% (n = 532 variants) without any false negative including a partial deletion of one exon. In the prospective group, from 25 DNA from patients without prior molecular analyses, 18 rare variants were identified in the first intention panel genes, allowing the diagnosis of monogenic dyslipidemia in 11 patients. In six other patients, the analysis of minor genes and wGRS determination provided a hypothesis to explain the dyslipidemia. Remaining data from the whole NGS workflow identified four patients with potentially deleterious variants. This NGS process gives a major opportunity to accede to an enhanced understanding of the genetic of dyslipidemia by simultaneous assessment of multiple genetic determinants.


Subject(s)
DNA Copy Number Variations/genetics , Dyslipidemias/genetics , Genetic Diseases, Inborn/diagnosis , High-Throughput Nucleotide Sequencing/methods , Dyslipidemias/diagnosis , Dyslipidemias/pathology , Female , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Genetic Testing , Humans , Male , Sequence Analysis, DNA/methods
4.
J Clin Lipidol ; 14(6): 756-761, 2020.
Article in English | MEDLINE | ID: mdl-33039347

ABSTRACT

Severe hypertriglyceridemia (HTG), characterized by triglycerides (TG) permanently over 10 mmol/L, may correspond to familial chylomicronemia syndrome (FCS), a rare disorder. However, hypertriglyceridemic patients more often present multifactorial chylomicronemia syndrome (MCS), characterized by highly variable TG. A few nonsense variants of LMF1 gene were reported in literature in FCS patients. In this study, we described a woman with an intermittent severe HTG. NGS analysis and the sequencing of a long range PCR product revealed a homozygous deletion of 6507 base pairs in LMF1 gene, c.730-1528_898-3417del, removing exon 6, predicted to create an in-frame deletion of 56 amino acids, p.(Thr244_Gln299del). Despite an exon 6 homozygous deletion of LMF1, the patient's highly variable lipid phenotype was suggestive of MCS diagnosis.


Subject(s)
Exons/genetics , Homozygote , Hypertriglyceridemia/genetics , Membrane Proteins/genetics , Sequence Deletion , Female , Humans
5.
Atherosclerosis ; 284: 75-82, 2019 05.
Article in English | MEDLINE | ID: mdl-30875496

ABSTRACT

BACKGROUND AND AIMS: Abetalipoproteinemia (ABL) is a rare recessive monogenic disease due to MTTP (microsomal triglyceride transfer protein) mutations leading to the absence of plasma apoB-containing lipoproteins. Here we characterize a new ABL case with usual clinical phenotype, hypocholesterolemia, hypotriglyceridemia but normal serum apolipoprotein B48 (apoB48) and red blood cell vitamin E concentrations. METHODS: Histology and MTP activity measurements were performed on intestinal biopsies. Mutations in MTTP were identified by Sanger sequencing, quantitative digital droplet and long-range PCR. Functional consequences of the variants were studied in vitro using a minigene splicing assay, measurement of MTP activity and apoB48 secretion. RESULTS: Intestinal steatosis and the absence of measurable lipid transfer activity in intestinal protein extract supported the diagnosis of ABL. A novel MTTP c.1868G>T variant inherited from the patient's father was identified. This variant gives rise to three mRNA transcripts: one normally spliced, found at a low frequency in intestinal biopsy, carrying the p.(Arg623Leu) missense variant, producing in vitro 65% of normal MTP activity and apoB48 secretion, and two abnormally spliced transcripts resulting in a non-functional MTP protein. Digital droplet PCR and long-range sequencing revealed a previously described c.1067+1217_1141del allele inherited from the mother, removing exon 10. Thus, the patient is compound heterozygous for two dysfunctional MTTP alleles. The p.(Arg623Leu) variant may maintain residual secretion of apoB48. CONCLUSIONS: Complex cases of primary dyslipidemia require the use of a cascade of different methodologies to establish the diagnosis in patients with non-classical biological phenotypes and provide better knowledge on the regulation of lipid metabolism.


Subject(s)
Abetalipoproteinemia/metabolism , Apolipoprotein B-48/blood , Erythrocytes/chemistry , Vitamin E/analysis , Abetalipoproteinemia/blood , Abetalipoproteinemia/genetics , Carrier Proteins/genetics , Child , Female , Follow-Up Studies , Heterozygote , Humans , Infant, Newborn , Mutation
6.
J Clin Lipidol ; 13(1): 201-212, 2019.
Article in English | MEDLINE | ID: mdl-30522860

ABSTRACT

BACKGROUND: Abetalipoproteinemia, a recessive disease resulting from deleterious variants in MTTP (microsomal triglyceride transfer protein), is characterized by undetectable concentrations of apolipoprotein B, extremely low levels of low-density lipoprotein cholesterol in the plasma, and a total inability to export apolipoprotein B-containing lipoproteins from both the intestine and the liver. OBJECTIVE: To study lipid absorption after a fat load and liver function in 7 heterozygous relatives from 2 abetalipoproteinemic families, 1 previously unreported. RESULTS: Both patients are compound heterozygotes for p.(Arg540His) and either c.708_709del p.(His236Glnfs*11) or c.1344+3_1344+6del on the MTTP gene. The previously undescribed patient has been followed for 22 years with ultrastructure analyses of both the intestine and the liver. In these 2 families, 5 relatives were heterozygous for p.(Arg540His), 1 for p.(His236Glnfs*11) and 1 for c.1344+3_1344+6del. In 4 heterozygous relatives, the lipid absorption was normal independent of the MTTP variant. In contrast, in 3 of them, the increase in triglyceride levels after fat load was abnormal. These subjects were additionally heterozygous carriers of Asp2213 APOB in-frame deletion, near the cytidine mRNA editing site, which is essential for intestinal apoB48 production. Liver function appeared to be normal in all the heterozygotes except for one who exhibited liver steatosis for unexplained reasons. CONCLUSION: Our study suggests that a single copy of the MTTP gene may be sufficient for human normal lipid absorption, except when associated with an additional APOB gene alteration. The hepatic steatosis reported in 1 patient emphasizes the need for liver function tests in all heterozygotes until the level of risk is established.


Subject(s)
Abetalipoproteinemia/genetics , Carrier Proteins/genetics , Genotype , Liver/metabolism , Sequence Deletion/genetics , Adolescent , Adult , Apolipoproteins B/genetics , Apolipoproteins B/metabolism , Child , Child, Preschool , Heterozygote , Humans , Infant , Lipid Metabolism , Malabsorption Syndromes , Male , Middle Aged , Pedigree , Polymorphism, Genetic , Postprandial Period , Young Adult
7.
J Hepatol ; 61(4): 891-902, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24842304

ABSTRACT

BACKGROUND & AIMS: Non-alcoholic steatohepatitis leading to fibrosis occurs in patients with abetalipoproteinemia (ABL) and homozygous or compound heterozygous familial hypobetalipoproteinemia (Ho-FHBL). We wanted to establish if liver alterations were more frequent in one of both diseases and were influenced by comorbidities. METHODS: We report genetic, clinical, histological and biological characteristics of new cases of ABL (n =7) and Ho-FHBL (n = 7), and compare them with all published ABL (51) and Ho-FHBL (22) probands. RESULTS: ABL patients, diagnosed during infancy, presented mainly with diarrhea, neurological and ophthalmological impairments and remained lean, whereas Ho-FHBL were diagnosed later, with milder symptoms often becoming overweight in adulthood. Despite subtle differences in lipid phenotype, liver steatosis was observed in both groups with a high prevalence of severe fibrosis (5/27 for Ho-FHBL vs. 4/58 for ABL (n.s.)). Serum triglycerides concentration was higher in Ho-FHBL whereas total and HDL-cholesterol were similar in both groups. In Ho-FHBL liver alterations were found to be independent from the apoB truncation size and apoB concentrations. CONCLUSIONS: Our findings provide evidence for major liver abnormalities in both diseases. While ABL and Ho-FHBL patients have subtle differences in lipid phenotype, carriers of APOB mutations are more frequently obese. These results raise the question of a complex causal link between apoB metabolism and obesity. They suggest that the genetic defect in VLDL assembly is critical for the occurrence of liver steatosis leading to fibrosis and shows that obesity and insulin resistance might contribute by increasing lipogenesis.


Subject(s)
Abetalipoproteinemia , Apolipoprotein B-100/genetics , Carrier Proteins/genetics , Hypobetalipoproteinemias , Non-alcoholic Fatty Liver Disease , Obesity , Abetalipoproteinemia/blood , Abetalipoproteinemia/diagnosis , Abetalipoproteinemia/epidemiology , Abetalipoproteinemia/genetics , Adolescent , Adult , Cholesterol, HDL/blood , Cohort Studies , Comorbidity , Female , France/epidemiology , Humans , Hypobetalipoproteinemias/blood , Hypobetalipoproteinemias/diagnosis , Hypobetalipoproteinemias/epidemiology , Hypobetalipoproteinemias/genetics , Insulin Resistance , Lipid Metabolism/genetics , Liver/metabolism , Male , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/etiology , Obesity/epidemiology , Obesity/genetics , Prevalence , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...