Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Subcell Biochem ; 94: 275-296, 2020.
Article in English | MEDLINE | ID: mdl-32189304

ABSTRACT

During the past two decades, significant advances have been made in our understanding of the human fetal and embryonic hemoglobins made possible by the availability of pure, highly characterized materials and novel methods, e.g., nano gel filtration, to study their properties and to correct some misconceptions. For example, whereas the structures of the human adult, fetal, and embryonic hemoglobins are very similar, it has generally been assumed that functional differences between them are due to primary sequence effects. However, more recent studies indicate that the strengths of the interactions between their subunits are very different leading to changes in their oxygen binding properties compared to adult hemoglobin. Fetal hemoglobin in the oxy conformation is a much stronger tetramer than adult hemoglobin and dissociates to dimers 70-times less than adult hemoglobin. This property may form the basis for its protective effect against malaria. A major source of the increased strength of fetal hemoglobin resides within the A-helix of its gamma subunit as demonstrated in studies with the hybrid hemoglobin Felix and related hybrids. Re-activating fetal hemoglobin synthesis in vivo is currently a major focus of clinical efforts designed to treat sickle cell anemia since it inhibits the aggregation of sickle hemoglobin. The mechanisms for both the increased oxygen affinity of fetal hemoglobin and its decreased response to DPG have been clarified. Acetylated fetal hemoglobin, which makes up 10-20% of total fetal hemoglobin, has a significantly weakened tetramer structure suggesting a similar role for other kinds of protein acetylation. Embryonic hemoglobins have the weakest tetramer and dimer structures. In general, the progressively increasing strength of the subunit interfaces of the hemoglobin family during development from the embryonic to the fetal and ultimately to the adult types correlates with their temporal appearance and disappearance in vivo, i.e., ontogeny.


Subject(s)
Embryo, Mammalian/blood supply , Fetal Hemoglobin/chemistry , Fetal Hemoglobin/metabolism , Oxygen/metabolism , Fetus/blood supply , Humans
2.
Pharmacol Res Perspect ; 4(2): e00214, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27069629

ABSTRACT

The Hedgehog (HH) pathway has been linked to the formation of basal cell carcinoma (BCC), medulloblastoma, and other cancers. The recently approved orally active drugs vismodegib (GDC-0449) and sonidegib (LDE-225) were not only efficacious for the treatment of advanced or metastatic BCC by antagonizing the smoothened (SMO) receptor, but also produced important side effects, limiting their use for less invasive BCC. Herein, we compared a large series of SMO antagonists, including GDC-0449 and LDE-225, the clinically tested BMS-833923, CUR-61414, cyclopamine, IPI-926 (saridegib), itraconazole, LEQ-506, LY-2940680 (taladegib), PF-04449913 (glasdegib), and TAK-441 as well as preclinical candidates (PF-5274857, MRT-83) in two SMO-dependent cellular assays and for G-protein activation. We report marked differences in inhibitor potencies between compounds as well as a notable disparity between the G-protein assay and the cellular tests, suggesting that classification of drugs is assay dependent. Furthermore, we explored topical efficacies of SMO antagonists on depilated mice using Gli1 and Ptch1 mRNA quantification in skin as biomarkers of the HH signaling inhibition. This topical model rapidly discriminated drugs in terms of efficacies and potencies for inhibition of both biomarkers. SMO antagonists showed also a large variation in their blood and skin partition, suggesting that some drugs are more favorable for topical application. Overall, our data suggested that in vitro and in vivo efficacious drugs such as LEQ-506 and TAK-441 may be of interest for topical treatment of less invasive BCC with minimal side effects.

3.
Bioorg Med Chem Lett ; 16(15): 3998-4001, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16765048

ABSTRACT

A series of small molecule compounds interfering with the binding process of VEGF and NRP1 has been identified and further optimized. Full synthetic details as well as SAR are reported which demonstrate that expeditious MCC-based syntheses may lead to valuable molecules addressing challenging targets such as protein-protein interactions. Preliminary functional assay data confirm that these compounds may be further developed toward drug candidates.


Subject(s)
Neuropilin-1/antagonists & inhibitors , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Cell Line , Neuropilin-1/metabolism , Protein Binding , Structure-Activity Relationship , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...