Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Integr Biol (Camb) ; 1(2): 196-204, 2009 Feb.
Article in English | MEDLINE | ID: mdl-20023803

ABSTRACT

The organization of cells and extracellular matrix (ECM) in native tissues plays a crucial role in their functionality. However, in tissue engineering, cells and ECM are randomly distributed within a scaffold. Thus, the production of engineered-tissue with complex 3D organization remains a challenge. In the present study, we used contact guidance to control the interactions between the material topography, the cells and the ECM for three different tissues, namely vascular media, corneal stroma and dermal tissue. Using a specific surface topography on an elastomeric material, we observed the orientation of a first cell layer along the patterns in the material. Orientation of the first cell layer translates into a physical cue that induces the second cell layer to follow a physiologically consistent orientation mimicking the structure of the native tissue. Furthermore, secreted ECM followed cell orientation in every layer, resulting in an oriented self-assembled tissue sheet. These self-assembled tissue sheets were then used to create 3 different structured engineered-tissue: cornea, vascular media and dermis. We showed that functionality of such structured engineered-tissue was increased when compared to the same non-structured tissue. Dermal tissues were used as a negative control in response to surface topography since native dermal fibroblasts are not preferentially oriented in vivo. Non-structured surfaces were also used to produce randomly oriented tissue sheets to evaluate the impact of tissue orientation on functional output. This novel approach for the production of more complex 3D tissues would be useful for clinical purposes and for in vitro physiological tissue model to better understand long standing questions in biology.


Subject(s)
Cornea/physiology , Extracellular Matrix/physiology , Fibroblasts/physiology , Tissue Engineering/methods , Tissue Scaffolds , Cornea/ultrastructure , Extracellular Matrix/ultrastructure , Humans , Immunohistochemistry , Microscopy, Confocal , Microscopy, Electron, Transmission , Spectrophotometry, Ultraviolet , Tensile Strength
2.
J Clin Microbiol ; 46(11): 3752-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18784318

ABSTRACT

Fabrication of microarray devices using traditional glass slides is not easily adaptable to integration into microfluidic systems. There is thus a need for the development of polymeric materials showing a high hybridization signal-to-background ratio, enabling sensitive detection of microbial pathogens. We have developed such plastic supports suitable for highly sensitive DNA microarray hybridizations. The proof of concept of this microarray technology was done through the detection of four human respiratory viruses that were amplified and labeled with a fluorescent dye via a sensitive reverse transcriptase PCR (RT-PCR) assay. The performance of the microarray hybridization with plastic supports made of PMMA [poly(methylmethacrylate)]-VSUVT or Zeonor 1060R was compared to that with high-quality glass slide microarrays by using both passive and microfluidic hybridization systems. Specific hybridization signal-to-background ratios comparable to that obtained with high-quality commercial glass slides were achieved with both polymeric substrates. Microarray hybridizations demonstrated an analytical sensitivity equivalent to approximately 100 viral genome copies per RT-PCR, which is at least 100-fold higher than the sensitivities of previously reported DNA hybridizations on plastic supports. Testing of these plastic polymers using a microfluidic microarray hybridization platform also showed results that were comparable to those with glass supports. In conclusion, PMMA-VSUVT and Zeonor 1060R are both suitable for highly sensitive microarray hybridizations.


Subject(s)
Microarray Analysis/methods , Oligonucleotide Array Sequence Analysis/methods , Plastics , Polymers , Viruses/isolation & purification , Humans , RNA, Viral/analysis , RNA, Viral/genetics , Sensitivity and Specificity , Viruses/genetics
3.
Lab Chip ; 7(7): 856-62, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17594004

ABSTRACT

Microarrays have become one of the most convenient tools for high throughput screening, supporting major advances in genomics and proteomics. Other important applications can be found in medical diagnostics, detection of biothreats, drug discovery, etc. Integration of microarrays with microfluidic devices can be highly advantageous in terms of portability, shorter analysis time and lower consumption of expensive biological analytes. Since fabrication of microfluidic devices using traditional materials such as glass is rather expensive, there is great interest in employing polymeric materials as a low cost alternative that is suitable for mass production. A number of commercially available plastic materials were reviewed for this purpose and poly(methylmethacrylate) Zeonor 1060R and Zeonex E48R were identified as promising candidates, for which methods for surface modification and covalent immobilization of DNA oligonucleotides were developed. In addition, we present proof-of-concept plastic-based microarrays with and without integration with microfluidics.


Subject(s)
Microfluidic Analytical Techniques , Oligonucleotide Array Sequence Analysis/instrumentation , Plastics/chemistry , Protein Array Analysis/instrumentation , Alkenes/chemistry , Carbon/chemistry , DNA/chemistry , Equipment Design , Manufactured Materials , Microfluidics , Static Electricity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL