Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893863

ABSTRACT

Recently, the combination of two-dimensional (2D) materials and perovskites has gained increasing attention in optoelectronic applications owing to their excellent optical and electrical characteristics. Here, we report a self-driven photodetector consisting of a monolayer graphene sheet and a centimeter-sized CH3NH3PbBr3 single crystal, which was prepared using an optimized wet transfer method. The photodetector exhibits a short response time of 2/30 µs by virtue of its high-quality interface, which greatly enhances electron-hole pair separation in the heterostructure under illumination. In addition, a responsivity of ~0.9 mA/W and a detectivity over 1010 Jones are attained at zero bias. This work inspires new methods for preparing large-scale high-quality perovskite/2D material heterostructures, and provides a new direction for the future enhancement of perovskite optoelectronics.

2.
ACS Appl Mater Interfaces ; 15(31): 37640-37648, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37491709

ABSTRACT

As a new-generation photoelectric material, perovskites have attracted researchers' attention due to their excellent optoelectronic properties. However, the existence of defects inevitably causes structural degradation and restricts their performance, which need to be further improved by post-treatment. At present, post-treatments mostly focus on non-contact treatments, which may constrain the effect since the influence on the perovskites caused by the direct contact is much more straightly. Therefore, we proposed an annealing strategy of straight manipulation in a solvent atmosphere with the assistance of polyimide (PI) tape for the perovskite post-treatment, due to the high heat resistance and less glue residual of this tape. It casts an influence on the perovskite directly, proving the possibility of the straight manipulation by operators, promoting the recrystallization of the perovskite grains and removing the impurity substance. The optimized Pb-free perovskite film exhibits a better X-ray sensitivity of 7.5 × 104 µC Gyair-1 cm-2 and a great detection limit of 47 nGyair s-1, which is comparable to advanced Pb-based perovskite X-ray detectors and all commercial ones. The new annealing strategy provides a facile, effective, and simple method to improve the perovskite quality, exhibiting the potential and harmlessness of the direct contact post-treatment, which paves the way for a broader application of perovskites.

3.
Nanoscale Adv ; 5(12): 3131-3145, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37325539

ABSTRACT

In recent years, flexible micro-pressure sensors have been used widely in wearable health monitoring applications due to their excellent flexibility, stretchability, non-invasiveness, comfort wearing and real-time detection. According to the working mechanism of the flexible micro-pressure sensor, it can be classified as piezoresistive, piezoelectric, capacitive and triboelectric types. Herein, an overview of flexible micro-pressure sensors for wearable health monitoring is presented. The physiological signaling and body motions contain a lot of health status information. Thus, this review focuses on the applications of flexible micro-pressure sensors in these fields. Additionally, the contents of sensing mechanism, sensing materials and performance of flexible micro-pressure sensors are introduced in detail. Finally, we predict the future research directions of the flexible micro-pressure sensors, and discuss the challenges in practical applications.

4.
ACS Nano ; 17(13): 12374-12382, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37338077

ABSTRACT

In today's information age, high performance nonvolatile memory devices have become extremely important. Despite their potential, existing devices suffer from limitations, such as low operation speed, low memory capacity, short retention time, and a complex preparation process. To overcome these limitations, advanced memory designs are required to improve speed, memory capacity, and retention time and reduce the number of preparation steps. Here, we present a nonvolatile floating-gate-like memory device based on a transistor that uses the polarization effect of ferroelectric material PZT (Pb[Zr0.2Ti0.8]O3) for regulating tunneling electrons for charging and discharging the MoS2 channel layer. The transistor is defined as a polarized tunneling transistor (PTT) and does not require a tunnel layer or a floating-gate layer. The PTT demonstrates an ultrafast programming/erasing speed of 25/20 ns and a response time of 120/105 ns, which is comparable to the ultrafast flash memories based on van der Waals heterostructures. Additionally, the PTT has a high extinction ratio of 104, a long retention time of 10 years, and a simple fabrication process. Our research provides future guidelines for the development of the next generation of ultrafast nonvolatile memory devices.

5.
Adv Sci (Weinh) ; 10(23): e2300256, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37232232

ABSTRACT

Lead halide perovskites have made remarkable progress in the field of radiation detection owing to the excellent and unique optoelectronic properties. However, the instability and the toxicity of lead-based perovskites have greatly hindered its practical applications. Alternatively, lead-free perovskites with high stability and environmental friendliness thus have fascinated significant research attention for direct X-ray detection. In this review, the current research progress of X-ray detectors based on lead-free halide perovskites is focused. First, the synthesis methods of lead-free perovskites including single crystals and films are discussed. In addition, the properties of these materials and the detectors, which can provide a better understanding and designing satisfactory devices are also presented. Finally, the challenge and outlook for developing high-performance lead-free perovskite X-ray detectors are also provided.

6.
ACS Nano ; 16(7): 10199-10208, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35622531

ABSTRACT

Pb-free perovskite material is considered to be a promising material utilized in next-generation X-ray detectors due to its high X-ray absorption coefficient, decent carrier transport properties, and relatively low toxicity. However, the pixelation of the perovskite material with an industry-level photolithography processing method remains challenging due to its poor structural stability. Herein, we use Cs2AgBiBr6 perovskite material as the prototype and investigate its interaction with photolithographic polar solvents. Inspired by that, we propose a wafer-scale photolithography patterning method, where the pixeled perovskite array devices for X-ray detection are successfully prepared. The devices based on pixeled Pb-free perovskite material show a high detection sensitivity up to 19118 ± 763 µC Gyair-1 cm-2, which is comparable to devices with Pb-based perovskite materials and superior to the detection sensitivity (∼20 µC Gyair-1 cm-2) of the commercial a-Se detector. After pixelation, the devices achieve an improved spatial resolution capacity with the spatial frequency from 2.7 to 7.8 lp mm-1 at modulation-transfer-function (MTF) = 0.2. Thus, this work may contribute to the development of high-performance array X-ray detectors based on Cs2AgBiBr6 perovskite material.

7.
Sci Adv ; 8(13): eabn2156, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35353573

ABSTRACT

We report an artificial eardrum using an acoustic sensor based on two-dimensional MXene (Ti3C2Tx), which mimics the function of a human eardrum for realizing voice detection and recognition. Using MXene with a large interlayer distance and micropyramid polydimethylsiloxane arrays can enable a two-stage amplification of pressure and acoustic sensing. The MXene artificial eardrum shows an extremely high sensitivity of 62 kPa-1 and a very low detection limit of 0.1 Pa. Notably, benefiting from the ultrasensitive MXene eardrum, the machine-learning algorithm for real-time voice classification can be realized with high accuracy. The 280 voice signals are successfully classified for seven categories, and a high accuracy of 96.4 and 95% can be achieved by the training dataset and the test dataset, respectively. The current results indicate that the MXene artificial intelligent eardrum shows great potential for applications in wearable acoustical health care devices.

8.
ACS Nano ; 15(12): 20590-20599, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34859997

ABSTRACT

Owing to the canonical trade-off between the gauge factor and the working range, there is an emergent need for strain sensors with customizable sensitivity for various applications of different deformation ranges. However, current optimization strategies typically allow possessing either, not both, high-sensing performance or customizable sensing performance. Here, a laser-programmed heterogeneous strain sensor featured locally coupled electrical and mechanical properties (named an LCoup sensor) is developed to access customized sensor performance. Coupled electromechanical properties enable the applied strain to be mainly experienced by the higher sensitivity regions when stretched. By optimizing the parameters of laser processes, the gauge factor can systematically screen within 2 orders of magnitude (from 7.8 to 266.6) while maintaining good stretchability (50%). To prove the potential in human-machine interaction, the real-time monitoring and recognition of set hand gestures (left-click, right-click, and double-click) are demonstrated, representing the traditional input patterns of the computer mouse. Multiscale programming of material properties can further achieve excellent and tailored device performances, offering more opportunities for the design of a broad range of flexible electronics.


Subject(s)
Wearable Electronic Devices , Electric Conductivity , Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...