Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Apr 05.
Article in English | MEDLINE | ID: mdl-38577979

ABSTRACT

Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.


Subject(s)
RNA Precursors , Transcription, Genetic , Animals , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA , Introns/genetics , Mammals/genetics
2.
Cell Syst ; 15(2): 109-133.e10, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38335955

ABSTRACT

Pluripotency can be induced in somatic cells by the expression of OCT4, KLF4, SOX2, and MYC. Usually only a rare subset of cells reprogram, and the molecular characteristics of this subset remain unknown. We apply retrospective clone tracing to identify and characterize the rare human fibroblasts primed for reprogramming. These fibroblasts showed markers of increased cell cycle speed and decreased fibroblast activation. Knockdown of a fibroblast activation factor identified by our analysis increased the reprogramming efficiency. We provide evidence for a unified model in which cells can move into and out of the primed state over time, explaining how reprogramming appears deterministic at short timescales and stochastic at long timescales. Furthermore, inhibiting the activity of LSD1 enlarged the pool of cells that were primed for reprogramming. Thus, even homogeneous cell populations can exhibit heritable molecular variability that can dictate whether individual rare cells will reprogram or not.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Retrospective Studies , Fibroblasts
3.
Nature ; 620(7974): 651-659, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37468627

ABSTRACT

Even among genetically identical cancer cells, resistance to therapy frequently emerges from a small subset of those cells1-7. Molecular differences in rare individual cells in the initial population enable certain cells to become resistant to therapy7-9; however, comparatively little is known about the variability in the resistance outcomes. Here we develop and apply FateMap, a framework that combines DNA barcoding with single-cell RNA sequencing, to reveal the fates of hundreds of thousands of clones exposed to anti-cancer therapies. We show that resistant clones emerging from single-cell-derived cancer cells adopt molecularly, morphologically and functionally distinct resistant types. These resistant types are largely predetermined by molecular differences between cells before drug addition and not by extrinsic factors. Changes in the dose and type of drug can switch the resistant type of an initial cell, resulting in the generation and elimination of certain resistant types. Samples from patients show evidence for the existence of these resistant types in a clinical context. We observed diversity in resistant types across several single-cell-derived cancer cell lines and cell types treated with a variety of drugs. The diversity of resistant types as a result of the variability in intrinsic cell states may be a generic feature of responses to external cues.


Subject(s)
Antineoplastic Agents , Clone Cells , Drug Resistance, Neoplasm , Neoplasms , Humans , Clone Cells/drug effects , Clone Cells/metabolism , Clone Cells/pathology , DNA Barcoding, Taxonomic , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , RNA-Seq , Single-Cell Gene Expression Analysis , Tumor Cells, Cultured , Antineoplastic Agents/pharmacology
4.
bioRxiv ; 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37461472

ABSTRACT

The ability of a virus to infect a cell type is at least in part determined by the presence of host factors required for the viral life cycle. However, even within cell types that express known factors needed for infection, not every cell is equally susceptible, suggesting that our knowledge of the full spectrum of factors that promote infection is incomplete. Profiling the most susceptible subsets of cells within a population may reveal additional factors that promote infection. However, because viral infection dramatically alters the state of the cell, new approaches are needed to reveal the state of these cells prior to infection with virus. Here, we used single-cell clone tracing to retrospectively identify and characterize lung epithelial cells that are highly susceptible to infection with SARS-CoV-2. The transcriptional state of these highly susceptible cells includes markers of retinoic acid signaling and epithelial differentiation. Loss of candidate factors identified by our approach revealed that many of these factors play roles in viral entry. Moreover, a subset of these factors exert control over the infectable cell state itself, regulating the expression of key factors associated with viral infection and entry. Analysis of patient samples revealed the heterogeneous expression of these factors across both cells and patients in vivo. Further, the expression of these factors is upregulated in particular inflammatory pathologies. Altogether, our results show that the variable expression of intrinsic cell states is a major determinant of whether a cell can be infected by SARS-CoV-2.

5.
bioRxiv ; 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36798299

ABSTRACT

Pluripotency can be induced in somatic cells by the expression of the four "Yamanaka" factors OCT4, KLF4, SOX2, and MYC. However, even in homogeneous conditions, usually only a rare subset of cells admit reprogramming, and the molecular characteristics of this subset remain unknown. Here, we apply retrospective clone tracing to identify and characterize the individual human fibroblast cells that are primed for reprogramming. These fibroblasts showed markers of increased cell cycle speed and decreased fibroblast activation. Knockdown of a fibroblast activation factor identified by our analysis led to increased reprogramming efficiency, identifying it as a barrier to reprogramming. Changing the frequency of reprogramming by inhibiting the activity of LSD1 led to an enlarging of the pool of cells that were primed for reprogramming. Our results show that even homogeneous cell populations can exhibit heritable molecular variability that can dictate whether individual rare cells will reprogram or not.

6.
Nat Struct Mol Biol ; 29(11): 1136-1144, 2022 11.
Article in English | MEDLINE | ID: mdl-36369346

ABSTRACT

Transcription at most promoters is divergent, initiating at closely spaced oppositely oriented core promoters to produce sense transcripts along with often unstable upstream antisense transcripts (uasTrx). How antisense transcription is regulated and to what extent it is coordinated with sense transcription is not well understood. Here, by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters. Primary transcript RNA-FISH shows that CTCF lowers burst fraction but not burst intensity of uasTrx and that co-bursting of sense and antisense transcripts is disfavored. Genome editing, chromatin conformation studies and high-resolution transcript mapping revealed that precisely positioned CTCF directly suppresses the initiation of uasTrx, in a manner independent of its architectural function. In sum, CTCF shapes the transcriptional landscape in part by suppressing upstream antisense transcription.


Subject(s)
Chromatin , Transcription, Genetic , Promoter Regions, Genetic , Chromatin/genetics , RNA, Antisense/genetics , Gene Expression Regulation
7.
Cell Syst ; 13(7): 547-560.e3, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35705097

ABSTRACT

Organoids recapitulate complex 3D organ structures and represent a unique opportunity to probe the principles of self-organization. While we can alter an organoid's morphology by manipulating the culture conditions, the morphology of an organoid often resembles that of its original organ, suggesting that organoid morphologies are governed by a set of tissue-specific constraints. Here, we establish a framework to identify constraints on an organoid's morphological features by quantifying them from microscopy images of organoids exposed to a range of perturbations. We apply this framework to Madin-Darby canine kidney cysts and show that they obey a number of constraints taking the form of scaling relationships or caps on certain parameters. For example, we found that the number, but not size, of cells increases with increasing cyst size. We also find that these constraints vary with cyst age and can be altered by varying the culture conditions. We observed similar sets of constraints in intestinal organoids. This quantitative framework for identifying constraints on organoid morphologies may inform future efforts to engineer organoids.


Subject(s)
Cysts , Organoids , Animals , Dogs , Phenotype
8.
Cell Syst ; 12(9): 885-899.e8, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34352221

ABSTRACT

Identifying the particular transcription factors that maintain cell type in vitro is important for manipulating cell type. Identifying such transcription factors by their cell-type-specific expression or their involvement in developmental regulation has had limited success. We hypothesized that because cell type is often resilient to perturbations, the transcriptional response to perturbations would reveal identity-maintaining transcription factors. We developed perturbation panel profiling (P3) as a framework for perturbing cells across many conditions and measuring gene expression responsiveness transcriptome-wide. In human iPSC-derived cardiac myocytes, P3 showed that transcription factors important for cardiac myocyte differentiation and maintenance were among the most frequently upregulated (most responsive). We reasoned that one function of responsive genes may be to maintain cellular identity. We identified responsive transcription factors in fibroblasts using P3 and found that suppressing their expression led to enhanced reprogramming. We propose that responsiveness to perturbations is a property of transcription factors that help maintain cellular identity in vitro. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Induced Pluripotent Stem Cells , Transcription Factors , Cell Differentiation/genetics , Fibroblasts/metabolism , Humans , Myocytes, Cardiac/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Mol Cell ; 81(8): 1666-1681.e6, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33823140

ABSTRACT

Nuclear speckles are prominent nuclear bodies that contain proteins and RNA involved in gene expression. Although links between nuclear speckles and gene activation are emerging, the mechanisms regulating association of genes with speckles are unclear. We find that speckle association of p53 target genes is driven by the p53 transcription factor. Focusing on p21, a key p53 target, we demonstrate that speckle association boosts expression by elevating nascent RNA amounts. p53-regulated speckle association did not depend on p53 transactivation functions but required an intact proline-rich domain and direct DNA binding, providing mechanisms within p53 for regulating gene-speckle association. Beyond p21, a substantial subset of p53 targets have p53-regulated speckle association. Strikingly, speckle-associating p53 targets are more robustly activated and occupy a distinct niche of p53 biology compared with non-speckle-associating p53 targets. Together, our findings illuminate regulated speckle association as a mechanism used by a transcription factor to boost gene expression.


Subject(s)
Cell Nucleus/genetics , Gene Expression Regulation/genetics , Nuclear Proteins/genetics , RNA/genetics , Transcriptional Activation/genetics , Tumor Suppressor Protein p53/genetics , DNA/genetics , HEK293 Cells , Humans , Intranuclear Inclusion Bodies/genetics , Protein Binding/genetics , Transcription Factors/genetics , Transcription, Genetic/genetics
10.
Nat Methods ; 16(7): 633-639, 2019 07.
Article in English | MEDLINE | ID: mdl-31235883

ABSTRACT

Mammalian genomes are folded into tens of thousands of long-range looping interactions. The cause-and-effect relationship between looping and genome function is poorly understood, and the extent to which loops are dynamic on short time scales remains an unanswered question. Here, we engineer a new class of synthetic architectural proteins for directed rearrangement of the three-dimensional genome using blue light. We target our light-activated-dynamic-looping (LADL) system to two genomic anchors with CRISPR guide RNAs and induce their spatial colocalization via light-induced heterodimerization of cryptochrome 2 and a dCas9-CIBN fusion protein. We apply LADL to redirect a stretch enhancer (SE) away from its endogenous Klf4 target gene and to the Zfp462 promoter. Using single-molecule RNA-FISH, we demonstrate that de novo formation of the Zfp462-SE loop correlates with a modest increase in Zfp462 expression. LADL facilitates colocalization of genomic loci without exogenous chemical cofactors and will enable future efforts to engineer reversible and oscillatory loops on short time scales.


Subject(s)
Gene Expression Regulation , Protein Engineering , Animals , Carrier Proteins/genetics , Cells, Cultured , DNA-Binding Proteins , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Light , Male , Mice , Nerve Tissue Proteins/genetics , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida/genetics
12.
Nat Biotechnol ; 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30418432

ABSTRACT

Methods for detecting single nucleic acids in cell and tissues, such as fluorescence in situ hybridization (FISH), are limited by relatively low signal intensity and nonspecific probe binding. Here we present click-amplifying FISH (clampFISH), a method for fluorescence detection of nucleic acids that achieves high specificity and high-gain (>400-fold) signal amplification. ClampFISH probes form a 'C' configuration upon hybridization to the sequence of interest in a double helical manner. The ends of the probes are ligated together using bio-orthogonal click chemistry, effectively locking the probes around the target. Iterative rounds of hybridization and click amplify the fluorescence intensity. We show that clampFISH enables the detection of RNA species with low-magnification microscopy and in RNA-based flow cytometry. Additionally, we show that the modular design of clampFISH probes allows multiplexing of RNA and DNA detection, that the locking mechanism prevents probe detachment in expansion microscopy, and that clampFISH can be applied in tissue samples.

13.
Cancer Res ; 78(17): 4957-4970, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29976575

ABSTRACT

The tumor microenvironment (TME) plays a major role in the pathogenesis of multiple cancer types, including upper-gastrointestinal (GI) cancers that currently lack effective therapeutic options. Cancer-associated fibroblasts (CAF) are an essential component of the TME, contributing to tumorigenesis by secreting growth factors, modifying the extracellular matrix, supporting angiogenesis, and suppressing antitumor immune responses. Through an unbiased approach, we have established that IL-6 mediates cross-talk between tumor cells and CAF not only by supporting tumor cell growth, but also by promoting fibroblast activation. As a result, IL-6 receptor (IL6Rα) and downstream effectors offer opportunities for targeted therapy in upper-GI cancers. IL-6 loss suppressed tumorigenesis in physiologically relevant three-dimensional (3D) organotypic and 3D tumoroid models and murine models of esophageal cancer. Tocilizumab, an anti-IL6Rα antibody, suppressed tumor growth in vivo in part via inhibition of STAT3 and MEK/ERK signaling. Analysis of a pan-cancer TCGA dataset revealed an inverse correlation between IL-6 and IL6Rα overexpression and patient survival. Therefore, we expanded evaluation of tocilizumab to head and neck squamous cell carcinoma patient-derived xenografts and gastric adenocarcinoma xenografts, demonstrating suppression of tumor growth and altered STAT3 and ERK1/2 gene signatures. We used small-molecule inhibitors of STAT3 and MEK1/2 signaling to suppress tumorigenesis in the 3D organotypic model of esophageal cancer. We demonstrate that IL6 is a major contributor to the dynamic cross-talk between tumor cells and CAF in the TME. Our findings provide a translational rationale for inhibition of IL6Rα and downstream signaling pathways as a novel targeted therapy in oral-upper-GI cancers.Significance: These findings demonstrate the interaction of esophageal cancer and cancer-associated fibroblasts through IL-6 signaling, providing rationale for a novel therapeutic approach to target these cancers. Cancer Res; 78(17); 4957-70. ©2018 AACR.


Subject(s)
Esophageal Neoplasms/genetics , Gastrointestinal Neoplasms/genetics , Interleukin-6/genetics , Receptors, Interleukin-6/genetics , Animals , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Esophageal Neoplasms/pathology , Gastrointestinal Neoplasms/pathology , Humans , MAP Kinase Signaling System/genetics , Mice , STAT3 Transcription Factor/genetics , Signal Transduction , Tumor Microenvironment/genetics , Xenograft Model Antitumor Assays
15.
Proc Natl Acad Sci U S A ; 114(46): E9873-E9882, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29078295

ABSTRACT

RNAs have been shown to undergo transfer between mammalian cells, although the mechanism behind this phenomenon and its overall importance to cell physiology is not well understood. Numerous publications have suggested that RNAs (microRNAs and incomplete mRNAs) undergo transfer via extracellular vesicles (e.g., exosomes). However, in contrast to a diffusion-based transfer mechanism, we find that full-length mRNAs undergo direct cell-cell transfer via cytoplasmic extensions characteristic of membrane nanotubes (mNTs), which connect donor and acceptor cells. By employing a simple coculture experimental model and using single-molecule imaging, we provide quantitative data showing that mRNAs are transferred between cells in contact. Examples of mRNAs that undergo transfer include those encoding GFP, mouse ß-actin, and human Cyclin D1, BRCA1, MT2A, and HER2. We show that intercellular mRNA transfer occurs in all coculture models tested (e.g., between primary cells, immortalized cells, and in cocultures of immortalized human and murine cells). Rapid mRNA transfer is dependent upon actin but is independent of de novo protein synthesis and is modulated by stress conditions and gene-expression levels. Hence, this work supports the hypothesis that full-length mRNAs undergo transfer between cells through a refined structural connection. Importantly, unlike the transfer of miRNA or RNA fragments, this process of communication transfers genetic information that could potentially alter the acceptor cell proteome. This phenomenon may prove important for the proper development and functioning of tissues as well as for host-parasite or symbiotic interactions.


Subject(s)
Cell Communication , Nanotubes , Protein Transport/physiology , RNA, Messenger/physiology , Actinin/genetics , Actinin/metabolism , Actins/metabolism , Animals , Cell Communication/genetics , Cell Line , Coculture Techniques , Cyclin D1/metabolism , Exosomes/metabolism , Fibroblasts , Gene Expression Regulation/genetics , Host-Parasite Interactions/physiology , Humans , Metallothionein/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/physiology , Protein Biosynthesis/genetics , Protein Transport/genetics , Proteome , RNA, Messenger/genetics , Receptor, ErbB-2/metabolism , Symbiosis/physiology , Ubiquitin-Protein Ligases/metabolism
16.
Nat Commun ; 8(1): 607, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28928360

ABSTRACT

In melanoma, therapies with inhibitors to oncogenic BRAFV600E are highly effective but responses are often short-lived due to the emergence of drug-resistant tumor subpopulations. We describe here a mechanism of acquired drug resistance through the tumor microenvironment, which is mediated by human tumor-associated B cells. Human melanoma cells constitutively produce the growth factor FGF-2, which activates tumor-infiltrating B cells to produce the growth factor IGF-1. B-cell-derived IGF-1 is critical for resistance of melanomas to BRAF and MEK inhibitors due to emergence of heterogeneous subpopulations and activation of FGFR-3. Consistently, resistance of melanomas to BRAF and/or MEK inhibitors is associated with increased CD20 and IGF-1 transcript levels in tumors and IGF-1 expression in tumor-associated B cells. Furthermore, first clinical data from a pilot trial in therapy-resistant metastatic melanoma patients show anti-tumor activity through B-cell depletion by anti-CD20 antibody. Our findings establish a mechanism of acquired therapy resistance through tumor-associated B cells with important clinical implications.Resistance to BRAFV600E inhibitors often occurs in melanoma patients. Here, the authors describe a potential mechanism of acquired drug resistance mediated by tumor-associated B cells-derived IGF-1.


Subject(s)
Antineoplastic Agents/therapeutic use , B-Lymphocytes/metabolism , Drug Resistance, Neoplasm , Insulin-Like Growth Factor I/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Skin Neoplasms/drug therapy , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Cell Survival , Cisplatin/therapeutic use , Fibroblast Growth Factor 2/metabolism , Humans , In Vitro Techniques , Melanoma/genetics , Paclitaxel/therapeutic use , Pilot Projects , Proto-Oncogene Proteins B-raf/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Skin Neoplasms/genetics , Tumor Microenvironment
17.
Immunity ; 47(3): 435-449.e8, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28930659

ABSTRACT

Commitment to the innate lymphoid cell (ILC) lineage is determined by Id2, a transcriptional regulator that antagonizes T and B cell-specific gene expression programs. Yet how Id2 expression is regulated in each ILC subset remains poorly understood. We identified a cis-regulatory element demarcated by a long non-coding RNA (lncRNA) that controls the function and lineage identity of group 1 ILCs, while being dispensable for early ILC development and homeostasis of ILC2s and ILC3s. The locus encoding this lncRNA, which we termed Rroid, directly interacted with the promoter of its neighboring gene, Id2, in group 1 ILCs. Moreover, the Rroid locus, but not the lncRNA itself, controlled the identity and function of ILC1s by promoting chromatin accessibility and deposition of STAT5 at the promoter of Id2 in response to interleukin (IL)-15. Thus, non-coding elements responsive to extracellular cues unique to each ILC subset represent a key regulatory layer for controlling the identity and function of ILCs.


Subject(s)
Gene Expression Regulation , Immunity, Innate/genetics , Lymphocytes/metabolism , RNA, Long Noncoding/genetics , Regulatory Sequences, Nucleic Acid , Animals , Cell Differentiation , Cell Lineage/genetics , Cell Lineage/immunology , Chromatin Assembly and Disassembly , Female , Gene Expression Profiling , Genetic Loci , Homeostasis , Inhibitor of Differentiation Protein 2/genetics , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Lymphocytes/immunology , Male , Mice , Promoter Regions, Genetic , STAT5 Transcription Factor/metabolism , Transcription, Genetic
18.
Nature ; 546(7658): 431-435, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28607484

ABSTRACT

Therapies that target signalling molecules that are mutated in cancers can often have substantial short-term effects, but the emergence of resistant cancer cells is a major barrier to full cures. Resistance can result from secondary mutations, but in other cases there is no clear genetic cause, raising the possibility of non-genetic rare cell variability. Here we show that human melanoma cells can display profound transcriptional variability at the single-cell level that predicts which cells will ultimately resist drug treatment. This variability involves infrequent, semi-coordinated transcription of a number of resistance markers at high levels in a very small percentage of cells. The addition of drug then induces epigenetic reprogramming in these cells, converting the transient transcriptional state to a stably resistant state. This reprogramming begins with a loss of SOX10-mediated differentiation followed by activation of new signalling pathways, partially mediated by the activity of the transcription factors JUN and/or AP-1 and TEAD. Our work reveals the multistage nature of the acquisition of drug resistance and provides a framework for understanding resistance dynamics in single cells. We find that other cell types also exhibit sporadic expression of many of these same marker genes, suggesting the existence of a general program in which expression is displayed in rare subpopulations of cells.


Subject(s)
Cellular Reprogramming/drug effects , Cellular Reprogramming/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Melanoma/genetics , Melanoma/pathology , Animals , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Epigenesis, Genetic/drug effects , ErbB Receptors/metabolism , Female , Genetic Markers/drug effects , Genetic Markers/genetics , Humans , In Situ Hybridization, Fluorescence , Indoles/pharmacology , Male , Nuclear Proteins/metabolism , Oncogene Protein p65(gag-jun)/metabolism , SOXE Transcription Factors/deficiency , SOXE Transcription Factors/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Single-Cell Analysis , Sulfonamides/pharmacology , TEA Domain Transcription Factors , Transcription Factor AP-1/metabolism , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Vemurafenib , Xenograft Model Antitumor Assays
19.
Nature ; 537(7619): 239-243, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27525555

ABSTRACT

Neutrophils, eosinophils and 'classical' monocytes collectively account for about 70% of human blood leukocytes and are among the shortest-lived cells in the body. Precise regulation of the lifespan of these myeloid cells is critical to maintain protective immune responses and minimize the deleterious consequences of prolonged inflammation. However, how the lifespan of these cells is strictly controlled remains largely unknown. Here we identify a long non-coding RNA that we termed Morrbid, which tightly controls the survival of neutrophils, eosinophils and classical monocytes in response to pro-survival cytokines in mice. To control the lifespan of these cells, Morrbid regulates the transcription of the neighbouring pro-apoptotic gene, Bcl2l11 (also known as Bim), by promoting the enrichment of the PRC2 complex at the Bcl2l11 promoter to maintain this gene in a poised state. Notably, Morrbid regulates this process in cis, enabling allele-specific control of Bcl2l11 transcription. Thus, in these highly inflammatory cells, changes in Morrbid levels provide a locus-specific regulatory mechanism that allows rapid control of apoptosis in response to extracellular pro-survival signals. As MORRBID is present in humans and dysregulated in individuals with hypereosinophilic syndrome, this long non-coding RNA may represent a potential therapeutic target for inflammatory disorders characterized by aberrant short-lived myeloid cell lifespan.


Subject(s)
Bcl-2-Like Protein 11/genetics , Myeloid Cells/cytology , Myeloid Cells/metabolism , RNA, Long Noncoding/genetics , Alleles , Animals , Antigens, Ly/metabolism , Apoptosis , Bcl-2-Like Protein 11/biosynthesis , Cell Survival , Down-Regulation , Eosinophils/cytology , Eosinophils/metabolism , Female , Humans , Male , Mice , Monocytes/cytology , Monocytes/metabolism , Neutrophils/cytology , Neutrophils/metabolism , Promoter Regions, Genetic
20.
Nat Commun ; 7: 10865, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26936319

ABSTRACT

Mesenchymal stem cells (MSCs) display substantial cell-to-cell heterogeneity, complicating their use in regenerative medicine. However, conventional bulk assays mask this variability. Here we show that both chondrocytes and chondrogenically induced MSCs exhibit substantial mRNA expression heterogeneity. Single-molecule RNA FISH to measure mRNA expression of differentiation markers in single cells reveals that sister cell pairs have high levels of mRNA variability, suggesting that marker expression is not heritable. Surprisingly, this variability does not correlate with cell-to-cell differences in cartilage-like matrix production. Transcriptome-wide analysis suggests that no combination of markers can predict functional potential. De-differentiating chondrocytes also show a disconnect between mRNA expression of the cartilage marker aggrecan and cartilage-like matrix accumulation. Altogether, these quantitative analyses suggest that sorting subpopulations based on these markers would only marginally enrich the progenitor population for 'superior' MSCs. Our results suggest that instantaneous mRNA abundance of canonical markers is tenuously linked to the chondrogenic phenotype at the single-cell level.


Subject(s)
Chondrocytes/physiology , Gene Expression Regulation/physiology , Mesenchymal Stem Cells/physiology , Animals , Biomarkers/metabolism , Cattle , Cell Differentiation/physiology , Extracellular Matrix , In Situ Hybridization, Fluorescence , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL
...