Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13438, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862649

ABSTRACT

The study covered a small, shallow lake, intensively used for recreation (sailing, tourist services and port infrastructure). This study aimed to determine the spatial differentiation of bottom sediments and the potential for phosphorus release in five zones, differing mainly in the type of recreation, depth, direct catchment management, shoreline management and macrophyte presence. The results were used to propose protective and restoration measures to improve the water quality of the studied lake. The innovation in the study was the detailed analysis of bottom sediments, which can be a significant source of pollution besides the external load from the catchment and tourist pressure, in the planned management of this ecosystem. Examination of the physicochemical properties of the bottom sediments showed a clear variation in both composition and potential for internal phosphorus loading. The sediments from the profundal zone, where the most boating activity was observed, together with the sediments from the shallow zone where the boats dock (mooring zone), had the highest potential to supply phosphorus to the bottom waters. This fact was demonstrated by the highest total phosphorus (TP) concentrations in sediments (up to 1.32 mgPg-1 DW) and the content of the most mobile fractions (up to 33%). The other zones associated with the marina, fuel zone, tributary and canal were not significant sources of phosphorus to the ecosystem. Based on the above results, a restoration method involving the removal of bottom sediments from the bottom zone was proposed, supported, of course, by protective measures in the catchment (maintaining a buffer zone around the lake and limiting the inflow of pollutants with tributary waters). The proposed measures with sustainable tourist pressure should improve water quality and thus contribute to protecting this valuable natural landscape.

2.
Article in English | MEDLINE | ID: mdl-36981972

ABSTRACT

This study was aimed primarily at describing the planktonic assemblages with special attention to invasive and toxin-producing cyanobacterial species in the context of ecological and health threats. The second aim was to analyze the aspect of recreational pressure, which may enhance the cyanobacterial blooms, and, as a consequence, the negative changes and loss of planktonic biodiversity. This study was carried out in recreationally used Lake Sztynorckie throughout the whole growing season of 2020 and included an assessment of the abundance and biomass of phytoplankton (cyanobacteria and algae) in relation to environmental variables. The total biomass was in the range of 28-70 mg L-1, which is typical for strong blooms. The dominant filamentous cyanobacteria were Pseudanabaena limnetica, Limnothrix redekei, Planktolyngbya limnetica, and Planktothrix agarhii, and three invasive nostocalean species Sphaerospermopsis aphanizomenoides, Cuspidothrix issatschenkoi, and Raphidiopsis raciborskii. They can pose a serious threat not only to the ecosystem but also to humans because of the possibility of cyanobacteria producing cyanotoxins, such as microcystins, saxitoxins, anatoxin-a, and cylindrospermopsins, having hepatotoxic, cytotoxic, neurotoxic, and dermatoxic effects. The water quality was assessed as water bodies had bad ecological status (based on phytoplankton), were highly meso-eutrophic (based on zooplankton), and had very low trophic efficiency and low biodiversity.


Subject(s)
Cyanobacteria , Ecosystem , Humans , Lakes/microbiology , Phytoplankton
3.
Nature ; 594(7861): 66-70, 2021 06.
Article in English | MEDLINE | ID: mdl-34079137

ABSTRACT

The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emissions4, and the quality of drinking water5. The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity6,7, but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8,9 or oxygen may increase as a result of enhanced primary production10. Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans6,7 and could threaten essential lake ecosystem services2,3,5,11.


Subject(s)
Lakes/chemistry , Oxygen/analysis , Oxygen/metabolism , Temperature , Animals , Climate Change , Ecosystem , Oceans and Seas , Oxygen/chemistry , Phytoplankton/metabolism , Solubility , Time Factors
4.
Environ Sci Technol ; 50(20): 10780-10794, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27597444

ABSTRACT

Recent technological developments have increased the number of variables being monitored in lakes and reservoirs using automatic high frequency monitoring (AHFM). However, design of AHFM systems and posterior data handling and interpretation are currently being developed on a site-by-site and issue-by-issue basis with minimal standardization of protocols or knowledge sharing. As a result, many deployments become short-lived or underutilized, and many new scientific developments that are potentially useful for water management and environmental legislation remain underexplored. This Critical Review bridges scientific uses of AHFM with their applications by providing an overview of the current AHFM capabilities, together with examples of successful applications. We review the use of AHFM for maximizing the provision of ecosystem services supplied by lakes and reservoirs (consumptive and non consumptive uses, food production, and recreation), and for reporting lake status in the EU Water Framework Directive. We also highlight critical issues to enhance the application of AHFM, and suggest the establishment of appropriate networks to facilitate knowledge sharing and technological transfer between potential users. Finally, we give advice on how modern sensor technology can successfully be applied on a larger scale to the management of lakes and reservoirs and maximize the ecosystem services they provide.


Subject(s)
Ecosystem , Lakes , Environmental Monitoring , Recreation
5.
Water Sci Technol ; 69(9): 1834-45, 2014.
Article in English | MEDLINE | ID: mdl-24804657

ABSTRACT

We investigated changes in the spatial distribution of phosphorus (P) and nitrogen (N) in the deep, mesotrophic Lake Hancza. The raw data collection, supported by global navigation satellite system (GNSS) positioning, was conducted on 79 sampling points. A geostatistical method (kriging) was applied in spatial interpolation. Despite the relatively small area of the lake (3.04 km(2)), compact shape (shore development index of 2.04) and low horizontal exchange of water (retention time 11.4 years), chemical gradients in the surface waters were found. The largest variation concerns the main biogenic element - phosphorus. The average value was 0.032 at the extreme values of 0.019 to 0.265 mg L(-1) (coefficient of variation 87%). Smaller differences are related to nitrogen compounds (0.452-1.424 mg L(-1) with an average value of 0.583 mg L(-1), the coefficient of variation 20%). The parts of the lake which are fed with tributaries are the richest in phosphorus. The water quality of the oligo-mesotrophic Lake Hancza has been deteriorating in recent years. Our results indicate that inferences about trends in the evolution of examined lake trophic status should be based on an analysis of the data, taking into account the local variation in water chemistry.


Subject(s)
Environmental Monitoring/methods , Geographic Information Systems , Lakes/chemistry , Nitrogen/chemistry , Phosphorus/chemistry , Spacecraft , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...