Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 629(8014): 1055-1061, 2024 May.
Article in English | MEDLINE | ID: mdl-38778099

ABSTRACT

Cement production causes 7.5% of global anthropogenic CO2 emissions, arising from limestone decarbonation and fossil-fuel combustion1-3. Current decarbonation strategies include substituting Portland clinker with supplementary materials, but these mainly arise in emitting processes, developing alternative binders but none yet promises scale, or adopting carbon capture and storage that still releases some emissions4-8. However, used cement is potentially an abundant, decarbonated feedstock. Here we show that recovered cement paste can be reclinkered if used as a partial substitute for the lime-dolomite flux used in steel recycling nowadays. The resulting slag can meet existing specifications for Portland clinker and can be blended effectively with calcined clay and limestone. The process is sensitive to the silica content of the recovered cement paste, and silica and alumina that may come from the scrap, but this can be adjusted easily. We show that the proposed process may be economically competitive, and if powered by emissions-free electricity, can lead to zero emissions cement while also reducing the emissions of steel recycling by reducing lime flux requirements. The global supply of scrap steel for recycling may treble by 2050, and it is likely that more slag can be made per unit of steel recycled. With material efficiency in construction9,10, future global cement requirements could be met by this route.

2.
Science ; 351(6269): aab2116, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26541609

ABSTRACT

In a classical view of hematopoiesis, the various blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. We developed a cell-sorting scheme to resolve myeloid (My), erythroid (Er), and megakaryocytic (Mk) fates from single CD34(+) cells and then mapped the progenitor hierarchy across human development. Fetal liver contained large numbers of distinct oligopotent progenitors with intermingled My, Er, and Mk fates. However, few oligopotent progenitor intermediates were present in the adult bone marrow. Instead, only two progenitor classes predominate, multipotent and unipotent, with Er-Mk lineages emerging from multipotent cells. The developmental shift to an adult "two-tier" hierarchy challenges current dogma and provides a revised framework to understand normal and disease states of human hematopoiesis.


Subject(s)
Cell Lineage/physiology , Erythroid Cells/cytology , Hematopoiesis/physiology , Megakaryocyte Progenitor Cells/cytology , Megakaryocytes/cytology , Myeloid Cells/cytology , Adult , Antigens, CD34/analysis , Cell Lineage/genetics , Cell Separation , Cells, Cultured , Fetal Blood/cytology , Gene Expression Profiling , Hematopoiesis/genetics , Humans , Liver/cytology , Liver/embryology , Multipotent Stem Cells/cytology , Transcription, Genetic
3.
Ann N Y Acad Sci ; 1370(1): 5-14, 2016 04.
Article in English | MEDLINE | ID: mdl-26663266

ABSTRACT

Blood cells are organized as a hierarchy with hematopoietic stem cells (HSCs) at the root. The advent of genomic technologies has opened the way for global characterization of the molecular landscape of HSCs and their progeny, both in mouse and human models, at the genetic, transcriptomic, epigenetic, and proteomics levels. Here, we outline our current understanding of the molecular programs that govern human HSCs and how dynamic changes occurring during HSC differentiation are necessary for well-regulated blood formation under homeostasis and upon injury. A large body of evidence is accumulating on how the programs of normal hematopoiesis are modified in acute myeloid leukemia, an aggressive adult malignancy driven by leukemic stem cells. We summarize these findings and their clinical implications.


Subject(s)
Cell Differentiation/physiology , Hematopoiesis/physiology , Hematopoietic Stem Cells/pathology , Leukemia/pathology , Hematopoietic Stem Cells/metabolism , Homeostasis/physiology , Humans , Leukemia/metabolism
4.
Cell Stem Cell ; 16(3): 302-13, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25704240

ABSTRACT

Regulated blood production is achieved through the hierarchical organization of dormant hematopoietic stem cell (HSC) subsets that differ in self-renewal potential and division frequency, with long-term (LT)-HSCs dividing the least. The molecular mechanisms underlying this variability in HSC division kinetics are unknown. We report here that quiescence exit kinetics are differentially regulated within human HSC subsets through the expression level of CDK6. LT-HSCs lack CDK6 protein. Short-term (ST)-HSCs are also quiescent but contain high CDK6 protein levels that permit rapid cell cycle entry upon mitogenic stimulation. Enforced CDK6 expression in LT-HSCs shortens quiescence exit and confers competitive advantage without impacting function. Computational modeling suggests that this independent control of quiescence exit kinetics inherently limits LT-HSC divisions and preserves the HSC pool to ensure lifelong hematopoiesis. Thus, differential expression of CDK6 underlies heterogeneity in stem cell quiescence states that functionally regulates this highly regenerative system.


Subject(s)
Cell Division/physiology , Computer Simulation , Cyclin-Dependent Kinase 6/biosynthesis , Gene Expression Regulation, Enzymologic/physiology , Hematopoietic Stem Cells/enzymology , Models, Biological , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Humans
5.
Cell ; 135(6): 1118-29, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-19062086

ABSTRACT

Bone marrow hematopoietic stem cells (HSCs) are crucial to maintain lifelong production of all blood cells. Although HSCs divide infrequently, it is thought that the entire HSC pool turns over every few weeks, suggesting that HSCs regularly enter and exit cell cycle. Here, we combine flow cytometry with label-retaining assays (BrdU and histone H2B-GFP) to identify a population of dormant mouse HSCs (d-HSCs) within the lin(-)Sca1+cKit+CD150+CD48(-)CD34(-) population. Computational modeling suggests that d-HSCs divide about every 145 days, or five times per lifetime. d-HSCs harbor the vast majority of multilineage long-term self-renewal activity. While they form a silent reservoir of the most potent HSCs during homeostasis, they are efficiently activated to self-renew in response to bone marrow injury or G-CSF stimulation. After re-establishment of homeostasis, activated HSCs return to dormancy, suggesting that HSCs are not stochastically entering the cell cycle but reversibly switch from dormancy to self-renewal under conditions of hematopoietic stress.


Subject(s)
Adult Stem Cells/cytology , Hematopoietic Stem Cells/cytology , Adult Stem Cells/physiology , Animals , Antigens, Differentiation/metabolism , Bone Marrow/physiology , Bromouracil/analogs & derivatives , Fluorouracil/metabolism , Green Fluorescent Proteins , Hematopoietic Stem Cells/physiology , Homeostasis , Mice , Mice, Transgenic , Uridine/analogs & derivatives , Uridine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...